Rbse Solutions for Class 10 Maths Chapter 11 Constructions (Hindi Medium)

Chapter 11 Constructions (रचनाएँ).

प्रश्नावली 11.1

प्रश्न 1. एक दी हुई किरण के प्रारम्भिक बिन्दु पर 90° के कोण की रचना कीजिए और कारण सहित रचना की पुष्टि कीजिए।
हल :
दिया है : AB एक दी हुई किरण है जिसका प्रारम्भिक बिन्दु A है।
रचना करनी है: किरण AB के बिन्दु A पर 90° के कोण की।
विश्लेषण : हम 60° का कोण बना सकते हैं।
इस कोण के साथ 60° का एक संलग्न कोण बनाकर उसे समद्विभाजित करें और इसमें जोड़ दें तो 90° का कोण प्राप्त होगा।
अर्थात 90° = 30° + 60°
रचना :

  1. किरण AB खींची।
  2. A को केन्द्र मानकर किसी त्रिज्या का चाप खींचा जो किरण AB को बिन्दु P पर काटता है।
  3. अब P को केन्द्र मानकर उसी त्रिज्या का एक चाप खींचा जो पहले चाप को बिन्दु Q पर काटता है। ∠PAQ = 60° है।
  4. पुनः Q को केन्द्र मानकर उसी (AP) त्रिज्या से एक अन्य चाप खींचा जो पहले चाप को बिन्दु R पर काटे। ∠QAR = 60° है।
  5. बिन्दु Q तथा R को केन्द्र मानकर चाप खींचे जो परस्पर बिन्दु C पर काटते हैं। रेखाखण्ड CA खींचा। ∠CAQ = 30° है।

प्रकार ∠CAB = ∠BAQ + ∠QAC = 60° + 30° = 90° हुआ।
अत: ∠CAB अभीष्ट कोण है।

प्रश्न 2.
एक दी हुई किरण के प्रारम्भिक बिन्दु पर 45° के कोण की रचना कीजिए और कारणसहित रचना की पुष्टि कीजिए।
हुल :
दिया है : OP एक दी हुई किरण है जिसका प्रारम्भिक बिन्दू 0 है।
रचना करनी है : किरण OP के बिन्दु 0 पर 45° के कोण की।
विश्लेषण : 45° = [latex]\frac { 1 }{ 2 }[/latex] x 90°
अत: 90° का कोण बनाकर उसे समद्विभाजित करके 45° का कोण प्राप्त होगा।
रचना :

  1. किरण OP खींची।
  2. O को केन्द्र मानकर किसी त्रिज्या OA का एक चाप लगाया जो किरण OP को A पर काटता है।
  3. A को केन्द्र मानकर उसी त्रिज्या का एक चाप खींचा जो पहले चाप को B पर काटता है।
  4. B को केन्द्र मानकर उसी त्रिज्या का एक अन्य चाप खींचा जो केन्द्र O वाले चाप को C पर काटता है।
  5. B तथा C को केन्द्र मानकर किसी त्रिज्या के चाप खींचे जो परस्पर बिन्दु R पर काटते हैं। रेखाखण्ड OR खींचा जो चाप BC को D पर काटता है। ∠POR = 90° है।
  6. बिन्दुओं A तथा D को केन्द्र मानकर किसी त्रिज्या के दो। चाप खींचे जो परस्पर बिन्दु Q पर काटते हैं। रेखाखण्ड OQ खींचा। ∠POQ = 45° क्योंकि OQ, ∠POR = 90° का समद्विभाजक है।

अतः ∠POQअभीष्ट कोण है।
UP Board Solutions for Class 9 Maths Chapter 11 Constructions img-2

प्रश्न 3. निम्नलिखित मापों के कोणों की रचना कीजिए :
(i) 30°
(ii) 22[latex]\frac { 1 }{ 2 }[/latex]°
(iii) 15°
हल :
(i) रचना करनी है : 30° के कोण की। विश्लेषण : 30° = [latex]\frac { 1 }{ 2 }[/latex] x 60°
रचना :

  1. एक किरण OA खींची।
  2. किरण OA के अन्त्य बिन्दु O को केन्द्र मानकर कोई त्रिज्या OB लेकर एक चाप लगाया जो GA को B पर काटता है।
  3. अब B को केन्द्र मानकर उसी त्रिज्या से एक अन्य चाप खींचा जो पहले चाप को बिन्दु,C पर काटता है। ∠AOC = 60° है।
  4. बिन्दुओं B तथा C को केन्द्र मानकर किसी त्रिज्या के दो चाप खींचे जो परस्पर बिन्दु D पर काटते हैं।
  5. ∠AOC का अर्धक (समद्विभाजक) OD खींचा। तब ∠AOD= 30° जो कि अभीष्ट कोण है।

(ii) रचना करनी है : 22[latex]\frac { 1 }{ 2 }[/latex]° के कोण की।
विश्लेषण : 90° के कोण का समद्विभाजक खींचने पर 45° का कोण प्राप्त होता है और इस 45° के कोण का समद्विभाजक खींचने पर 22[latex]\frac { 1 }{ 2 }[/latex]° का कोण प्राप्त होगा।
22[latex]\frac { 1 }{ 2 }[/latex]° = [latex]\frac { 1 }{ 2 }[/latex] x [latex]\frac { 90 }{ 2 }[/latex] = [latex]\frac { 1 }{ 2 }[/latex] x 45°
रचना :

  1. एक किरण OA खींची।।
  2. किरण OA के अन्त्य बिन्दु 0 को केन्द्र मानकर OP त्रिज्या का एक चाप खींचा जो किरण OA को बिन्दु Pपर काटता है।
  3. P को केन्द्र मानकर OP त्रिज्या से एक चाप खींचा जो पहले चाप को Q पर काटता है।
  4. Q को केन्द्र मानकर उसी OP त्रिज्या का चाप खींचा जो चाप PQ को R पर काटता है।
  5. Q और R को केन्द्र मानकर चाप खींचे जो परस्पर T पर काटता है। रेखाखण्ड OT खींचा जो चाप PQR को S पर काटता है। ∠AOT = 90° है।।
  6. बिन्दुओं P तथा S को केन्द्र मानकर किसी त्रिज्या के दो चाप खींचे जो परस्पर बिन्दु C पर काटते हैं।
  7. ∠AOT का समद्विभाजक OC खींचा। जो चाप PQR को U पर काटता है। ∠AOC = 45° है।
  8. बिन्दुओं P तथा U को केन्द्र मानकर किसी त्रिज्या के दो चाप खींचे जो परस्पर बिन्दु B पर काटते हैं।
  9. ∠POU का समद्विभाजक OB खींचा।

अतः ∠AOB = 22[latex]\frac { 1 }{ 2 }[/latex]° जो कि अभीष्ट कोण है।

(iii) रचना करनी है : 15° के कोण की।
विश्लेषण : 60° के कोण का समद्विभाजक 30° का कोण बनाया। अब 30°C के कोण का समद्विभाजक 15° का कोण बनाया।
अर्थात 15° = [latex]\frac { 1 }{ 2 }[/latex] ([latex]\frac { 60 }{ 2 }[/latex]) = [latex]\frac { 30 }{ 2 }[/latex]
रचना :

  1. किरण OA के अन्त्य बिन्दु 0 से किरण OA पर ∠AOC = 60° इस अध्याय की रचना-3 में वर्णित विधि से बनाया।
  2. ∠AOC का समद्विभाजक OD खींचा। ∠AOD = 30° है जिसे इस प्रश्न के भाग (i) में वर्णित विधि से बनाया।
  3. बिन्दुओं B तथा P को केन्द्र मानकर किसी त्रिज्या के दो चाप खींचे जो परस्पर बिन्दु E पर काटते हैं।
  4. अब ∠AOD का समद्विभाजक OE खींचा। तब ∠AOE = 15° जो कि अभीष्ट कोण है।

प्रश्न 4. निम्नलिखित कोणों की रचना कीजिए और चाँदे द्वारा मापकर पुष्टि कीजिए :
(i) 75°
(ii) 105°
(iii) 135°
हल :
(i) रचना करनी है : 75° के कोण की।
विश्लेषण : 75° = 90° – 15° = 90° – (30° के कोण [latex]\frac { 1 }{ 2 }[/latex])
रचना :

  1. प्रश्न-1 की भाँति वर्णित विधि से ∠POQ= 90° बनाया और किरण OB खींची।
  2. बिन्दुओं B तथा T को केन्द्र मानकर किसी त्रिज्या के दो चाप खींचे जो परस्पर बिन्दु S पर काटते हैं।
  3. ∠BOQ = ∠POQ – ∠POB = 90° – 60° = 30° का। समद्विभाजक OS खींचा। जिससे ∠QOS = 15°
  4. स्पष्ट है कि ∠POS = ∠POQ – ∠QOS = 90° – 15° = 75°
    अतः ∠POS अभीष्ट कोण है।

(ii) रचना करनी है : 105° के कोण की।
विश्लेषण : 60° + 30° + (30° x [latex]\frac { 1 }{ 2 }[/latex]) = 105°
अथवा 90 अथवा 90° + (30° x [latex]\frac { 1 }{ 2 }[/latex]) = 105°
रचना :

  1. प्रश्न-1 की भाँति वर्णित विधि से सर्वप्रथम ∠POQ = 90° बनाया।
  2. किरण OC खींची। (स्पष्ट है कि ∠QOC = 30°)
  3. बिन्दुओं T तथा C को केन्द्र मानकर किसी त्रिज्या के दो चाप खींचे जो परस्पर बिन्दु S पर काटते हैं।
  4. ∠QOC का समद्विभाजक OS खींचा जिससे ∠QOS = 15°।
    स्पष्ट है कि ∠POS = ∠POQ + ∠QOS = 90° + 15° = 105°
    इस प्रकार, ∠POS = 105° का अभीष्ट कोण है।

(iii) रचना करनी है : 135° के कोण की।
विश्लेषण : 135° = 90° + 45°
रचना :

  1. रेखा QP खींची और इस पर एक बिन्दु 0 लिया।
  2. प्रश्न-1 की भाँति वर्णित विधि से O से OR ⊥ QP खींची जिससे ∠POR = 90°
  3. प्रश्न-2 की भाँति वर्णित विधि से ∠QOR का समद्विभाजक OS खींचा।
    ∠ROS = [latex]\frac { 1 }{ 2 }[/latex] x ∠QOR = [latex]\frac { 1 }{ 2 }[/latex] x 90° = 45° (∠POR = ∠QOR = 90°]
    तथा ∠POS = ∠POR + ∠ROS = 90° + 45° = 135°
    तब ∠POS अभीष्ट 135° का कोण है।

प्रश्न 5. एक समबाहु त्रिभुज की रचना कीजिए, जब इसकी भुजा दी हो तथा कारण सहित रचना कीजिए।
हल :
दिया है : समबाहु त्रिभुज ABC की भुजा BC
रचना करनी है : समबाहु त्रिभुज ABC की।
रचना :

  1. रेखाखण्ड BC दी गई माप का खींचा।
  2. B तथा Cको केन्द्र मानकर BC त्रिज्या के दो चाप लगाए जो परस्पर A पर काटते हैं।
  3. रेखाखण्ड AB तथा AC खींचे।
    त्रिभुज ABC अभीष्ट समबाहु त्रिभुज है।
    उपपत्ति : AB = BC और AC = BC (रचना से)
    ⇒ AB = BC = AC
    त्रिभुज ABC समबाहु ही है।

प्रश्नावली 11.2

प्रश्न 1. एक त्रिभुज ABC की रचना कीजिए जिसमें BC = 7 सेमी, ∠B = 75° और AB + AC = 13 सेमी हो।
हल :
दिया है : ∆ABC में BC = 7 सेमी, ∠B = 75° और AB+ AC = 13 सेमी है।
रचना करनी है : ∆ABC की।
रचना :

  1. एक किरण BX खींचकर उसमें से रेखाखण्ड BC = 7.0 सेमी काटा।
  2. BC के बिन्दु B से BC पर ∠CBY = 75° बनाया।
  3. BY में से BD = 13 सेमी काटा।
  4. CD को मिलाया और उसका लम्ब समद्विभाजक खींचा जिसने BD को बिन्दु A पर काटा।
  5. रेखाखण्ड AC खींचा।
    ∆ABC अभीष्ट त्रिभुज है।

प्रश्न 2. एक त्रिभुज ABC की रचना कीजिए जिसमें BC = 8 सेमी, ∠B = 45° और AB – AC = 3.5 सेमी हो।
हल :
दिया है : ABC एक त्रिभुज है जिसमें BC = 8 सेमी, ∠B = 45° व AB – AC = 3.5 सेमी है।
रचना करनी है : ∆ABC की।
रचना :

  1. एक रेखाखण्ड BC = 8.0 सेमी खींचा।
  2. बिन्दु B से BC पर ∠XBC = 45° बनाया।
  3. BX में से BD = 3.5 सेमी काटा।
  4. CD को मिलाया।
  5. CD को लम्बे समद्विभाजक खींचा जो बढ़ी हुई BD को A पर काटता है।
  6. AC को मिलाया।
    ∆ABC अभीष्ट त्रिभुज है।

प्रश्न 3. एक त्रिभुज PQR की रचना कीजिए जिसमें QR = 6 सेमी, ∠Q = 60° और PR – PQ = 2 सेमी हो।
हल :
दिया है : ∆PQR में, QR = 6 सेमी, ∠Q = 60°, भुजा PQ < PR और PR – PG = 2 सेमी है।
रचना करनी है : ∆PQR की।
रचना :

  1. रेखाखण्ड QR = 6 सेमी खींचा।
  2. Q से QR पर ∠XQR = 60° बनाया।
  3. X को आगे बढ़ाया और उसमें से QS = (PR – PQ) = 2 सेमी काट लिया।
  4. SR को मिलाया।
  5. SR का लम्ब समद्विभाजक खींचा जो OX को P पर काटता है।
  6. रेखाखण्ड PR खींचा। ∆PQR अभीष्ट त्रिभुज है।

प्रश्न 4. एक त्रिभुज XYZ की रचना कीजिए, जिसमें ∠Y = 30°, ∠Z = 90° और XY + YZ + ZX = 11 सेमी हो।
हल :
दिया है : ∆XYZ में, ∠Y = 30°, ∠Z = 90° है
तथा XY + YZ + ZX = 11 सेमी है।
रचना करनी है : ∆XYZ की।
रचना :

  1. त्रिभुज की परिमाप (XY + YZ + ZX)= 11 सेमी के बराबर माप का रेखाखण्ड PQ खींचा।
  2. P पर ∠RPQ = 30° व Q पर ∠SQP = 90° दिए हुए आधार कोण बनाए।
  3. ∠RPQ व ∠SQP के समद्विभाजक खींचे जो परस्पर शीर्ष X पर काटते हैं।
  4. PX का लम्ब समद्विभाजक खींचा जो PQ को Y पर काटता है।
  5. QX का लम्ब समद्विभाजक खींचा जो PQ को Z पर काटता है।
  6. XY और XZ को मिलाया।
    ∆XYZ अभीष्ट त्रिभुज है।

प्रश्न 5. एक समकोण त्रिभुज की रचना कीजिए जिसका आधार 12 सेमी और कर्ण व अन्य भुजा का योग 18 सेमी हो।
हल :
दिया है : समकोण ∆ABC में आधार BC = 12 सेमी, ∠C = 90°
तथा कर्ण AB व एक अन्य भुजा AC का योग 18 सेमी हो।
रचना करनी है : समकोण ∆ABC की।
रचना :

  1. रेखाखण्ड BC = 12 सेमी खींचा।
  2. बिन्दु C से BC पर ∠BCX = 90° बनाया।
  3. CX में से CD = (AB + AC) = 18 सेमी काट लिया।
  4. रेखाखण्ड BD खींचा।
  5. BD का लम्ब समद्विभाजक खींचा जिसने CD को बिन्दु A पर काटा।
  6. रेखाखण्ड AB खींचा।
    ∆ABC अभीष्ट त्रिभुज है।

Leave a Comment

Your email address will not be published.

Patio umbrellas sold at Costco recalled after reports of fires गर्मी में लू लगने से बचाव करेंगे यह खाद्य पदार्थ, आज ही खाना करें शुरू ट्रेन के बीच में ही AC कोच क्यों लगाए जाते हैं? Rbse books for class 1 to 12 hindi medium 2021-22
ट्रेन के बीच में ही AC कोच क्यों लगाए जाते हैं? गर्मी में लू लगने से बचाव करेंगे यह खाद्य पदार्थ, आज ही खाना करें शुरू Rbse books for class 1 to 12 hindi medium 2021-22 Patio umbrellas sold at Costco recalled after reports of fires