Rbse Solutions for Class 7 Chapter 4 – Simple Equations Exercise 4.1

1. Complete the last column of the table.

S. No.EquationValueSay, whether the equation is satisfied. (Yes/No)
(i)x + 3 = 0x = 3
(ii)x + 3 = 0x = 0
(iii)x + 3 = 0x = -3
(iv)x – 7 = 1x = 7
(v)x – 7 = 1x = 8
(vi)5x = 25x = 0
(vii)5x = 25x = 5
(viii)5x = 25x = -5
(ix)(m/3) = 2m = – 6
(x)(m/3) = 2m = 0
(xi)(m/3) = 2m = 6
Rbse Solutions for Class 7 Chapter 4

Solution:-

(i) x + 3 = 0

LHS = x + 3

By substituting the value of x = 3

Then,

LHS = 3 + 3 = 6

By comparing LHS and RHS

LHS ≠ RHS

∴No, the equation is not satisfied.

(ii) x + 3 = 0

LHS = x + 3

By substituting the value of x = 0

Then,

LHS = 0 + 3 = 3

By comparing LHS and RHS

LHS ≠ RHS

∴No, the equation is not satisfied.

(iii) x + 3 = 0

LHS = x + 3

By substituting the value of x = – 3

Then,

LHS = – 3 + 3 = 0

By comparing LHS and RHS

LHS = RHS

∴Yes, the equation is satisfied

(iv) x – 7 = 1

LHS = x – 7

By substituting the value of x = 7

Then,

LHS = 7 – 7 = 0

By comparing LHS and RHS

LHS ≠ RHS

∴No, the equation is not satisfied

(v) x – 7 = 1

LHS = x – 7

By substituting the value of x = 8

Then,

LHS = 8 – 7 = 1

By comparing LHS and RHS

LHS = RHS

∴Yes, the equation is satisfied.

(vi) 5x = 25

LHS = 5x

By substituting the value of x = 0

Then,

LHS = 5 × 0 = 0

By comparing LHS and RHS

LHS ≠ RHS

∴No, the equation is not satisfied.

(vii) 5x = 25

LHS = 5x

By substituting the value of x = 5

Then,

LHS = 5 × 5 = 25

By comparing LHS and RHS

LHS = RHS

∴Yes, the equation is satisfied.

(viii) 5x = 25

LHS = 5x

By substituting the value of x = -5

Then,

LHS = 5 × (-5) = – 25

By comparing LHS and RHS

LHS ≠ RHS

∴No, the equation is not satisfied.

(ix) m/3 = 2

LHS = m/3

By substituting the value of m = – 6

Then,

LHS = -6/3 = – 2

By comparing LHS and RHS

LHS ≠ RHS

∴No, the equation is not satisfied.

(x) m/3 = 2

LHS = m/3

By substituting the value of m = 0

Then,

LHS = 0/3 = 0

By comparing LHS and RHS

LHS ≠ RHS

∴No, the equation is not satisfied.

(xi) m/3 = 2

LHS = m/3

By substituting the value of m = 6

Then,

LHS = 6/3 = 2

By comparing LHS and RHS

LHS = RHS

∴Yes, the equation is satisfied.

S. No.EquationValueSay, whether the equation is satisfied. (Yes/No)
(i)x + 3 = 0x = 3No
(ii)x + 3 = 0x = 0No
(iii)x + 3 = 0x = -3Yes
(iv)x – 7 = 1x = 7No
(v)x – 7 = 1x = 8Yes
(vi)5x = 25x = 0No
(vii)5x = 25x = 5Yes
(viii)5x = 25x = -5No
(ix)(m/3) = 2m = – 6No
(x)(m/3) = 2m = 0No
(xi)(m/3) = 2m = 6Yes
Rbse Solutions for Class 7 Chapter 4

2. Check whether the value given in the brackets is a solution to the given equation or not:

(a) n + 5 = 19 (n = 1)

Solution:-

LHS = n + 5

By substituting the value of n = 1

Then,

LHS = n + 5

= 1 + 5

= 6

By comparing LHS and RHS

6 ≠ 19

LHS ≠ RHS

Hence, the value of n = 1 is not a solution to the given equation n + 5 = 19.

(b) 7n + 5 = 19 (n = – 2)

Solution:-

LHS = 7n + 5

By substituting the value of n = -2

Then,

LHS = 7n + 5

= (7 × (-2)) + 5

= – 14 + 5

= – 9

By comparing LHS and RHS

-9 ≠ 19

LHS ≠ RHS

Hence, the value of n = -2 is not a solution to the given equation 7n + 5 = 19.

(c) 7n + 5 = 19 (n = 2)

Solution:-

LHS = 7n + 5

By substituting the value of n = 2

Then,

LHS = 7n + 5

= (7 × (2)) + 5

= 14 + 5

= 19

By comparing LHS and RHS

19 = 19

LHS = RHS

Hence, the value of n = 2 is a solution to the given equation 7n + 5 = 19.

(d) 4p – 3 = 13 (p = 1)

Solution:-

LHS = 4p – 3

By substituting the value of p = 1

Then,

LHS = 4p – 3

= (4 × 1) – 3

= 4 – 3

= 1

By comparing LHS and RHS

1 ≠ 13

LHS ≠ RHS

Hence, the value of p = 1 is not a solution to the given equation 4p – 3 = 13.

(e) 4p – 3 = 13 (p = – 4)

Solution:-

LHS = 4p – 3

By substituting the value of p = – 4

Then,

LHS = 4p – 3

= (4 × (-4)) – 3

= -16 – 3

= -19

By comparing LHS and RHS

-19 ≠ 13

LHS ≠ RHS

Hence, the value of p = -4 is not a solution to the given equation 4p – 3 = 13.

(f) 4p – 3 = 13 (p = 0)

Solution:-

LHS = 4p – 3

By substituting the value of p = 0

Then,

LHS = 4p – 3

= (4 × 0) – 3

= 0 – 3

= -3

By comparing LHS and RHS

– 3 ≠ 13

LHS ≠ RHS

Hence, the value of p = 0 is not a solution to the given equation 4p – 3 = 13.

3. Solve the following equations by trial and error method:

(i) 5p + 2 = 17

Solution:-

LHS = 5p + 2

By substituting the value of p = 0

Then,

LHS = 5p + 2

= (5 × 0) + 2

= 0 + 2

= 2

By comparing LHS and RHS

2 ≠ 17

LHS ≠ RHS

Hence, the value of p = 0 is not a solution to the given equation.

Let, p = 1

LHS = 5p + 2

= (5 × 1) + 2

= 5 + 2

= 7

By comparing LHS and RHS

7 ≠ 17

LHS ≠ RHS

Hence, the value of p = 1 is not a solution to the given equation.

Let, p = 2

LHS = 5p + 2

= (5 × 2) + 2

= 10 + 2

= 12

By comparing LHS and RHS

12 ≠ 17

LHS ≠ RHS

Hence, the value of p = 2 is not a solution to the given equation.

Let, p = 3

LHS = 5p + 2

= (5 × 3) + 2

= 15 + 2

= 17

By comparing LHS and RHS

17 = 17

LHS = RHS

Hence, the value of p = 3 is a solution to the given equation.

(ii) 3m – 14 = 4

Solution:-

LHS = 3m – 14

By substituting the value of m = 3

Then,

LHS = 3m – 14

= (3 × 3) – 14

= 9 – 14

= – 5

By comparing LHS and RHS

-5 ≠ 4

LHS ≠ RHS

Hence, the value of m = 3 is not a solution to the given equation.

Let, m = 4

LHS = 3m – 14

= (3 × 4) – 14

= 12 – 14

= – 2

By comparing LHS and RHS

-2 ≠ 4

LHS ≠ RHS

Hence, the value of m = 4 is not a solution to the given equation.

Let, m = 5

LHS = 3m – 14

= (3 × 5) – 14

= 15 – 14

= 1

By comparing LHS and RHS

1 ≠ 4

LHS ≠ RHS

Hence, the value of m = 5 is not a solution to the given equation.

Let, m = 6

LHS = 3m – 14

= (3 × 6) – 14

= 18 – 14

= 4

By comparing LHS and RHS

4 = 4

LHS = RHS

Hence, the value of m = 6 is a solution to the given equation.

4. Write equations for the following statements:

(i) The sum of numbers x and 4 is 9.

Solution:-

The above statement can be written in the equation form as,

= x + 4 = 9

(ii) 2 subtracted from y is 8.

Solution:-

The above statement can be written in the equation form as,

= y – 2 = 8

(iii) Ten times a is 70.

Solution:-

The above statement can be written in the equation form as,

= 10a = 70

(iv) The number b divided by 5 gives 6.

Solution:-

The above statement can be written in the equation form as,

= (b/5) = 6

(v) Three-fourth of t is 15.

Solution:-

The above statement can be written in the equation form as,

= ¾t = 15

(vi) Seven times m plus 7 gets you 77.

Solution:-

The above statement can be written in the equation form as,

Seven times m is 7m

= 7m + 7 = 77

(vii) One-fourth of a number x minus 4 gives 4.

Solution:-

The above statement can be written in the equation form as,

One-fourth of a number x is x/4

= x/4 – 4 = 4

(viii) If you take away 6 from 6 times y, you get 60.

Solution:-

The above statement can be written in the equation form as,

6 times of y is 6y

= 6y – 6 = 60

(ix) If you add 3 to one-third of z, you get 30.

Solution:-

The above statement can be written in the equation form as,

One-third of z is z/3

= 3 + z/3 = 30

5. Write the following equations in statement forms:

(i) p + 4 = 15

Solution:-

The sum of numbers p and 4 is 15.

(ii) m – 7 = 3

Solution:-

7 subtracted from m is 3.

(iii) 2m = 7

Solution:-

Twice of number m is 7.

(iv) m/5 = 3

Solution:-

The number m divided by 5 gives 3.

(v) (3m)/5 = 6

Solution:-

Three-fifth of m is 6.

(vi) 3p + 4 = 25

Solution:-

Three times p plus 4 gives you 25.

(vii) 4p – 2 = 18

Solution:-

Four times p minus 2 gives you 18.

(viii) p/2 + 2 = 8

Solution-

If you add half of a number p to 2, you get 8.

6. Set up an equation in the following cases:

(i) Irfan says that he has 7 marbles more than five times the marbles Parmit has. Irfan has 37 marbles. (Take m to be the number of Parmit’s marbles.)

Solution:-

From the question it is given that,

Number of Parmit’s marbles = m

Then,

Irfan has 7 marbles more than five times the marbles Parmit has

= 5 × Number of Parmit’s marbles + 7 = Total number of marbles Irfan having

= (5 × m) + 7 = 37

= 5m + 7 = 37

(ii) Laxmi’s father is 49 years old. He is 4 years older than three times Laxmi’s age. (Take Laxmi’s age to be y years.)

Solution:-

From the question it is given that,

Let Laxmi’s age to be = y years old

Then,

Lakshmi’s father is 4 years older than three times of her age

= 3 × Laxmi’s age + 4 = Age of Lakshmi’s father

= (3 × y) + 4 = 49

= 3y + 4 = 49

(iii) The teacher tells the class that the highest marks obtained by a student in her class is twice the lowest marks plus 7. The highest score is 87. (Take the lowest score to be l.)

Solution:-

From the question it is given that,

Highest score in the class = 87

Let lowest score be l

= 2 × Lowest score + 7 = Highest score in the class

= (2 × l) + 7 = 87

= 2l + 7 = 87

(iv) In an isosceles triangle, the vertex angle is twice either base angle. (Let the base angle be b in degrees. Remember that the sum of angles of a triangle is 180 degrees).

Solution:-

From the question it is given that,

We know that, the sum of angles of a triangle is 180o

Let base angle be b

Then,

Vertex angle = 2 × base angle = 2b

= b + b + 2b = 180o

= 4b = 180o


Access other exercises of Rbse Solutions For Class 7 Chapter 4 – Simple Equations

Exercise 4.2 Solutions

Exercise 4.3 Solutions

Exercise 4.4 Solutions

2 thoughts on “Rbse Solutions for Class 7 Chapter 4 – Simple Equations Exercise 4.1”

  1. Pingback: Rbse Solutions for Class 7 Maths Chapter 4 – Simple Equations Exercise 4.2 - ncert solutions

  2. Pingback: Rbse Solutions for Class 7 Maths Chapter 4 – Simple Equations Exercise 4.4 - ncert solutions

Leave a Comment

Your email address will not be published.

Patio umbrellas sold at Costco recalled after reports of fires गर्मी में लू लगने से बचाव करेंगे यह खाद्य पदार्थ, आज ही खाना करें शुरू ट्रेन के बीच में ही AC कोच क्यों लगाए जाते हैं? Rbse books for class 1 to 12 hindi medium 2021-22
ट्रेन के बीच में ही AC कोच क्यों लगाए जाते हैं? गर्मी में लू लगने से बचाव करेंगे यह खाद्य पदार्थ, आज ही खाना करें शुरू Rbse books for class 1 to 12 hindi medium 2021-22 Patio umbrellas sold at Costco recalled after reports of fires