Rbse Solutions for Class 11 maths Chapter 3 Exercise 3.2 | Trigonometric Functions

Last Updated on November 24, 2025 by Aman Singh

Get detailed, step-by-step solutions for NCERT Class 11 Maths Chapter 3 Exercise 3.2. Learn to find the values of all five remaining trigonometric functions given one value and the quadrant of $x$. Master the use of trigonometric identities ($\sin^2 x + \cos^2 x = 1$) and the CAST rule to determine signs. Practice evaluating trig functions for large angles (e.g., $\sin 765^{\circ}$, $\tan(19\pi/3)$) using the periodicity of functions.

Rbse Solutions for Class 11 maths Chapter 3 Exercise 3.2 | Trigonometric Functions
Rbse Solutions for Class 11 maths Chapter 3 Exercise 3.2 | Trigonometric Functions

This exercise requires finding the values of the remaining five trigonometric functions given one function value and the quadrant of $x$, and evaluating trigonometric functions for large angles.


Finding the Values of Other Five Trigonometric Functions (Exercises 1-5)

We use the fundamental identities and the quadrant signs to determine the values.

1. $\cos x = -\frac{1}{2}$, $x$ lies in the third quadrant.

  1. $\sec x$ (Reciprocal of $\cos x$):$$\sec x = \frac{1}{\cos x} = \frac{1}{-1/2} = \mathbf{-2}$$
  2. $\sin x$ (Using Pythagorean Identity):$$\sin^2 x = 1 – \cos^2 x = 1 – \left(-\frac{1}{2}\right)^2 = 1 – \frac{1}{4} = \frac{3}{4}$$In the third quadrant, $\sin x$ is negative.$$\sin x = -\sqrt{\frac{3}{4}} = \mathbf{-\frac{\sqrt{3}}{2}}$$
  3. $\csc x$ (Reciprocal of $\sin x$):$$\csc x = \frac{1}{\sin x} = \frac{1}{-\sqrt{3}/2} = \mathbf{-\frac{2}{\sqrt{3}}}$$
  4. $\tan x$ (Quotient Identity):$$\tan x = \frac{\sin x}{\cos x} = \frac{-\sqrt{3}/2}{-1/2} = \mathbf{\sqrt{3}}$$
  5. $\cot x$ (Reciprocal of $\tan x$):$$\cot x = \frac{1}{\tan x} = \frac{1}{\sqrt{3}} = \mathbf{\frac{1}{\sqrt{3}}}$$
FunctionValue
$\sin x$$\mathbf{-\sqrt{3}/2}$
$\csc x$$\mathbf{-2/\sqrt{3}}$
$\tan x$$\mathbf{\sqrt{3}}$
$\cot x$$\mathbf{1/\sqrt{3}}$
$\sec x$$\mathbf{-2}$

2. $\sin x = \frac{3}{5}$, $x$ lies in the second quadrant.

  1. $\csc x$ (Reciprocal of $\sin x$):$$\csc x = \frac{1}{\sin x} = \mathbf{\frac{5}{3}}$$
  2. $\cos x$ (Using Pythagorean Identity):$$\cos^2 x = 1 – \sin^2 x = 1 – \left(\frac{3}{5}\right)^2 = 1 – \frac{9}{25} = \frac{16}{25}$$In the second quadrant, $\cos x$ is negative.$$\cos x = -\sqrt{\frac{16}{25}} = \mathbf{-\frac{4}{5}}$$
  3. $\sec x$ (Reciprocal of $\cos x$):$$\sec x = \frac{1}{\cos x} = \mathbf{-\frac{5}{4}}$$
  4. $\tan x$ (Quotient Identity):$$\tan x = \frac{\sin x}{\cos x} = \frac{3/5}{-4/5} = \mathbf{-\frac{3}{4}}$$
  5. $\cot x$ (Reciprocal of $\tan x$):$$\cot x = \frac{1}{\tan x} = \mathbf{-\frac{4}{3}}$$

3. $\cot x = \frac{4}{3}$, $x$ lies in the third quadrant.

  1. $\tan x$ (Reciprocal of $\cot x$):$$\tan x = \frac{1}{\cot x} = \mathbf{\frac{3}{4}}$$
  2. $\csc x$ (Using Pythagorean Identity: $1 + \cot^2 x = \csc^2 x$):$$\csc^2 x = 1 + \left(\frac{4}{3}\right)^2 = 1 + \frac{16}{9} = \frac{25}{9}$$In the third quadrant, $\csc x$ is negative.$$\csc x = -\sqrt{\frac{25}{9}} = \mathbf{-\frac{5}{3}}$$
  3. $\sin x$ (Reciprocal of $\csc x$):$$\sin x = \frac{1}{\csc x} = \mathbf{-\frac{3}{5}}$$
  4. $\cos x$ (Using $\tan x$ and $\sin x$):Since $\tan x = \frac{\sin x}{\cos x}$, $\cos x = \frac{\sin x}{\tan x}$.$$\cos x = \frac{-3/5}{3/4} = -\frac{3}{5} \times \frac{4}{3} = \mathbf{-\frac{4}{5}}$$
  5. $\sec x$ (Reciprocal of $\cos x$):$$\sec x = \frac{1}{\cos x} = \mathbf{-\frac{5}{4}}$$

4. $\sec x = \frac{13}{5}$, $x$ lies in the fourth quadrant.

  1. $\cos x$ (Reciprocal of $\sec x$):$$\cos x = \frac{1}{\sec x} = \mathbf{\frac{5}{13}}$$
  2. $\sin x$ (Using Pythagorean Identity):$$\sin^2 x = 1 – \cos^2 x = 1 – \left(\frac{5}{13}\right)^2 = 1 – \frac{25}{169} = \frac{144}{169}$$In the fourth quadrant, $\sin x$ is negative.$$\sin x = -\sqrt{\frac{144}{169}} = \mathbf{-\frac{12}{13}}$$
  3. $\csc x$ (Reciprocal of $\sin x$):$$\csc x = \frac{1}{\sin x} = \mathbf{-\frac{13}{12}}$$
  4. $\tan x$ (Quotient Identity):$$\tan x = \frac{\sin x}{\cos x} = \frac{-12/13}{5/13} = \mathbf{-\frac{12}{5}}$$
  5. $\cot x$ (Reciprocal of $\tan x$):$$\cot x = \frac{1}{\tan x} = \mathbf{-\frac{5}{12}}$$

5. $\tan x = -\frac{5}{12}$, $x$ lies in the second quadrant.

  1. $\cot x$ (Reciprocal of $\tan x$):$$\cot x = \frac{1}{\tan x} = \mathbf{-\frac{12}{5}}$$
  2. $\sec x$ (Using Pythagorean Identity: $1 + \tan^2 x = \sec^2 x$):$$\sec^2 x = 1 + \left(-\frac{5}{12}\right)^2 = 1 + \frac{25}{144} = \frac{169}{144}$$In the second quadrant, $\sec x$ is negative.$$\sec x = -\sqrt{\frac{169}{144}} = \mathbf{-\frac{13}{12}}$$
  3. $\cos x$ (Reciprocal of $\sec x$):$$\cos x = \frac{1}{\sec x} = \mathbf{-\frac{12}{13}}$$
  4. $\sin x$ (Using $\tan x$ and $\cos x$):Since $\tan x = \frac{\sin x}{\cos x}$, $\sin x = \tan x \cdot \cos x$.$$\sin x = \left(-\frac{5}{12}\right) \cdot \left(-\frac{12}{13}\right) = \mathbf{\frac{5}{13}}$$
  5. $\csc x$ (Reciprocal of $\sin x$):$$\csc x = \frac{1}{\sin x} = \mathbf{\frac{13}{5}}$$

Finding the Values of Trigonometric Functions (Exercises 6-10)

We use the periodicity of trigonometric functions: $\sin(x + 2n\pi) = \sin x$, $\cos(x + 2n\pi) = \cos x$, and $\tan(x + n\pi) = \tan x$. For degrees, the period is $360^{\circ}$ (or $180^{\circ}$ for tangent/cotangent).

6. $\sin 765^{\circ}$

Divide $765^{\circ}$ by $360^{\circ}$: $765 = 2 \times 360 + 45$.

$$\sin 765^{\circ} = \sin (2 \times 360^{\circ} + 45^{\circ})$$

$$\sin 765^{\circ} = \sin 45^{\circ} = \mathbf{\frac{1}{\sqrt{2}}}$$


7. $\csc (-1410^{\circ})$

Use the odd function property: $\csc(-x) = -\csc x$.

$$\csc (-1410^{\circ}) = -\csc (1410^{\circ})$$

Divide $1410^{\circ}$ by $360^{\circ}$: $1410 = 3 \times 360 + 330$.

$$-\csc (1410^{\circ}) = -\csc (3 \times 360^{\circ} + 330^{\circ})$$

$$= -\csc (330^{\circ})$$

Use $\csc(360^{\circ} – \theta) = -\csc \theta$:

$$-\csc (360^{\circ} – 30^{\circ}) = -[-\csc 30^{\circ}]$$

$$= \csc 30^{\circ} = \mathbf{2}$$


8. $\tan \left(\frac{19\pi}{3}\right)$

Divide $19$ by $3$: $19/3 = 6 + 1/3$.

$$\tan \left(\frac{19\pi}{3}\right) = \tan \left(6\pi + \frac{\pi}{3}\right)$$

The period of $\tan x$ is $\pi$, so $\tan(6\pi + \theta) = \tan \theta$.

$$\tan \left(6\pi + \frac{\pi}{3}\right) = \tan \frac{\pi}{3} = \mathbf{\sqrt{3}}$$


9. $\sin \left(-\frac{11\pi}{3}\right)$

Use the odd function property: $\sin(-x) = -\sin x$.

$$\sin \left(-\frac{11\pi}{3}\right) = -\sin \left(\frac{11\pi}{3}\right)$$

Divide $11$ by $3$: $11/3 = 3 + 2/3$. We use $4\pi – \frac{\pi}{3}$.

$$-\sin \left(\frac{11\pi}{3}\right) = -\sin \left(4\pi – \frac{\pi}{3}\right)$$

Use $\sin(2n\pi – \theta) = -\sin \theta$.

$$-\sin \left(4\pi – \frac{\pi}{3}\right) = – \left[-\sin \left(\frac{\pi}{3}\right)\right]$$

$$= \sin \left(\frac{\pi}{3}\right) = \mathbf{\frac{\sqrt{3}}{2}}$$


10. $\cot \left(-\frac{15\pi}{4}\right)$

Use the odd function property: $\cot(-x) = -\cot x$.

$$\cot \left(-\frac{15\pi}{4}\right) = -\cot \left(\frac{15\pi}{4}\right)$$

Divide $15$ by $4$: $15/4 = 3 + 3/4$. We use $4\pi – \frac{\pi}{4}$.

$$-\cot \left(\frac{15\pi}{4}\right) = -\cot \left(4\pi – \frac{\pi}{4}\right)$$

The period of $\cot x$ is $\pi$, so $\cot(4\pi – \theta) = \cot(-\theta) = -\cot \theta$.

$$-\cot \left(4\pi – \frac{\pi}{4}\right) = – \left[-\cot \left(\frac{\pi}{4}\right)\right]$$

$$= \cot \left(\frac{\pi}{4}\right) = \mathbf{1}$$

Author

  • Aman Singh

    Aman Singh | M.Sc. Mathematics, RRBMU University Alwar

    A seasoned Mathematics Educator with 7 years of dedicated experience in the field of education. Specializing in simplifying complex mathematical concepts, Aman has a proven track record of helping students master advanced topics. Holds an M.Sc. in Mathematics from RRBMU University, Alwar. Passionate about leveraging conceptual clarity and effective teaching methodologies to drive student success and achievement.

    "Transforming mathematical complexity into conceptual clarity."

    For the past 7 years, Aman Singh has been on a mission to redefine math education. Armed with an M.Sc. in Mathematics from RRBMU University Alwar, Aman brings a deep well of knowledge and seven years of classroom insight to every lesson. Specializing in turning student struggle into genuine mastery, Aman believes math isn't just about numbers—it's about building confidence and problem-solving muscle.