Rbse Solutions for Class 10 Maths Chapter 8 Exercise 8.2 Solutions | Trigonometric Ratios of Specific Angles

Get complete, step-by-step solutions for NCERT Class 10 Maths Chapter 8 Exercise 8.2.

Practice evaluating complex trigonometric expressions involving the standard angles $30^\circ, 45^\circ, 60^\circ$ (Q.1). Master algebraic manipulation and rationalization of results (Q.1, iv, v). Solutions include choosing and justifying the correct trigonometric option for simplified expressions (Q.2) and solving simultaneous equations to find angles A and B using inverse trigonometric values (Q.3). Critically assess and justify True/False statements regarding the behavior of $\sin \theta$ and $\cos \theta$ as the angle increases, and the definitions of trigonometric identities (Q.4). Essential practice for numerical application of specific trigonometric ratios.

This exercise requires knowledge of the trigonometric values for standard angles: $0^\circ, 30^\circ, 45^\circ, 60^\circ, \text{ and } 90^\circ$.

θsinθcosθtanθcscθsecθcotθ
$\mathbf{30^\circ}$$1/2$$\sqrt{3}/2$$1/\sqrt{3}$$2$$2/\sqrt{3}$$\sqrt{3}$
$\mathbf{45^\circ}$$1/\sqrt{2}$$1/\sqrt{2}$$1$$\sqrt{2}$$\sqrt{2}$$1$
$\mathbf{60^\circ}$$\sqrt{3}/2$$1/2$$\sqrt{3}$$2/\sqrt{3}$$2$$1/\sqrt{3}$

1. Evaluate the following

(i) $\sin 60^\circ \cos 30^\circ + \sin 30^\circ \cos 60^\circ$

Using the standard values:

$$\left(\frac{\sqrt{3}}{2}\right) \left(\frac{\sqrt{3}}{2}\right) + \left(\frac{1}{2}\right) \left(\frac{1}{2}\right) = \frac{3}{4} + \frac{1}{4} = \frac{4}{4} = \mathbf{1}$$

(ii) $2 \tan^2 45^\circ + \cos^2 30^\circ – \sin^2 60^\circ$

Using the standard values:

$$2(1)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 – \left(\frac{\sqrt{3}}{2}\right)^2 = 2(1) + \frac{3}{4} – \frac{3}{4} = 2 + 0 = \mathbf{2}$$

(iii) $\frac{\cos 45^\circ}{\sec 30^\circ + \csc 30^\circ}$

Substitute the values:

$$\frac{1/\sqrt{2}}{2/\sqrt{3} + 2} = \frac{1/\sqrt{2}}{\frac{2 + 2\sqrt{3}}{\sqrt{3}}} = \frac{1}{\sqrt{2}} \times \frac{\sqrt{3}}{2 + 2\sqrt{3}}$$

Rationalize the denominator:

$$\frac{\sqrt{3}}{2\sqrt{2}(1 + \sqrt{3})} = \frac{\sqrt{3}}{2\sqrt{2}(\sqrt{3} + 1)} \times \frac{\sqrt{3} – 1}{\sqrt{3} – 1}$$

$$= \frac{\sqrt{3}(\sqrt{3} – 1)}{2\sqrt{2}(3 – 1)} = \frac{3 – \sqrt{3}}{4\sqrt{2}}$$

Rationalize again to remove $\sqrt{2}$ from the denominator:

$$= \frac{3 – \sqrt{3}}{4\sqrt{2}} \times \frac{\sqrt{2}}{\sqrt{2}} = \frac{3\sqrt{2} – \sqrt{6}}{8}$$

$$\mathbf{\frac{3\sqrt{2} – \sqrt{6}}{8}}$$

(iv) $\frac{\sin 30^\circ + \tan 45^\circ – \csc 60^\circ}{\sec 30^\circ + \cos 60^\circ + \cot 45^\circ}$

Substitute the values:

$$\frac{\frac{1}{2} + 1 – \frac{2}{\sqrt{3}}}{\frac{2}{\sqrt{3}} + \frac{1}{2} + 1} = \frac{\frac{3}{2} – \frac{2}{\sqrt{3}}}{\frac{2}{\sqrt{3}} + \frac{3}{2}}$$

Find a common denominator ($2\sqrt{3}$) for the numerator and denominator:

$$= \frac{\frac{3\sqrt{3} – 4}{2\sqrt{3}}}{\frac{4 + 3\sqrt{3}}{2\sqrt{3}}} = \frac{3\sqrt{3} – 4}{3\sqrt{3} + 4}$$

Rationalize the denominator by multiplying by the conjugate $(3\sqrt{3} – 4)$:

$$= \frac{3\sqrt{3} – 4}{3\sqrt{3} + 4} \times \frac{3\sqrt{3} – 4}{3\sqrt{3} – 4} = \frac{(3\sqrt{3} – 4)^2}{(3\sqrt{3})^2 – 4^2}$$

$$= \frac{(9 \times 3) – 2(3\sqrt{3})(4) + 16}{27 – 16} = \frac{27 – 24\sqrt{3} + 16}{11} = \mathbf{\frac{43 – 24\sqrt{3}}{11}}$$

(v) $\frac{5 \cos^2 60^\circ + 4 \sec^2 30^\circ – \tan^2 45^\circ}{\sin^2 30^\circ + \cos^2 30^\circ}$

Note: The denominator simplifies to $1$, since $\sin^2 \theta + \cos^2 \theta = 1$.

$$\text{Denominator} = \left(\frac{1}{2}\right)^2 + \left(\frac{\sqrt{3}}{2}\right)^2 = \frac{1}{4} + \frac{3}{4} = 1$$

Now evaluate the numerator:

$$\text{Numerator} = 5\left(\frac{1}{2}\right)^2 + 4\left(\frac{2}{\sqrt{3}}\right)^2 – (1)^2$$

$$\text{Numerator} = 5\left(\frac{1}{4}\right) + 4\left(\frac{4}{3}\right) – 1 = \frac{5}{4} + \frac{16}{3} – 1$$

Find a common denominator (12):

$$\text{Numerator} = \frac{5(3)}{12} + \frac{16(4)}{12} – \frac{12}{12} = \frac{15 + 64 – 12}{12} = \frac{67}{12}$$

$$\text{Value} = \frac{67/12}{1} = \mathbf{\frac{67}{12}}$$


2. Choose the correct option and justify your choice

(i) $\frac{2 \tan 30^\circ}{1 + \tan^2 30^\circ}$

$$\frac{2(1/\sqrt{3})}{1 + (1/\sqrt{3})^2} = \frac{2/\sqrt{3}}{1 + 1/3} = \frac{2/\sqrt{3}}{4/3}$$

$$= \frac{2}{\sqrt{3}} \times \frac{3}{4} = \frac{6}{4\sqrt{3}} = \frac{3}{2\sqrt{3}} = \frac{3\sqrt{3}}{2(3)} = \frac{\sqrt{3}}{2}$$

Since $\sin 60^\circ = \sqrt{3}/2$, the correct option is (A) $\sin 60^\circ$.

(ii) $\frac{1 – \tan^2 45^\circ}{1 + \tan^2 45^\circ}$

$$\frac{1 – (1)^2}{1 + (1)^2} = \frac{1 – 1}{1 + 1} = \frac{0}{2} = 0$$

Since $\sin 90^\circ = 1$, $\cos 90^\circ = 0$. $\sin 45^\circ = 1/\sqrt{2}$. $\tan 90^\circ$ is undefined.

The value is 0. The correct option is (D) $0$.

(iii) $\sin 2A = 2 \sin A$ is true when $A = $

We test the options:

  • (A) $A = 0^\circ$: $\sin(2 \cdot 0^\circ) = \sin 0^\circ = 0$. $2 \sin 0^\circ = 2(0) = 0$. (True)
  • (B) $A = 30^\circ$: $\sin(2 \cdot 30^\circ) = \sin 60^\circ = \sqrt{3}/2$. $2 \sin 30^\circ = 2(1/2) = 1$. ($\sqrt{3}/2 \neq 1$)The identity is only true when $A=0^\circ$.The correct option is (A) $0^\circ$.

(iv) $\frac{2 \tan 30^\circ}{1 – \tan^2 30^\circ}$

$$\frac{2(1/\sqrt{3})}{1 – (1/\sqrt{3})^2} = \frac{2/\sqrt{3}}{1 – 1/3} = \frac{2/\sqrt{3}}{2/3}$$

$$= \frac{2}{\sqrt{3}} \times \frac{3}{2} = \frac{3}{\sqrt{3}} = \sqrt{3}$$

Since $\tan 60^\circ = \sqrt{3}$, the correct option is (C) $\tan 60^\circ$.


3. Find $A$ and $B$

Given:

  1. $\tan (A + B) = \sqrt{3}$
  2. $\tan (A – B) = 1/\sqrt{3}$

We know that $\tan 60^\circ = \sqrt{3}$ and $\tan 30^\circ = 1/\sqrt{3}$.

$$\tan (A + B) = \tan 60^\circ \implies A + B = 60^\circ \quad \dots (1)$$

$$\tan (A – B) = \tan 30^\circ \implies A – B = 30^\circ \quad \dots (2)$$

Add (1) and (2):

$$(A + B) + (A – B) = 60^\circ + 30^\circ$$

$$2A = 90^\circ \implies A = 45^\circ$$

Substitute $A = 45^\circ$ into (1):

$$45^\circ + B = 60^\circ \implies B = 60^\circ – 45^\circ = 15^\circ$$

Check constraints: $0^\circ < 45^\circ + 15^\circ = 60^\circ \le 90^\circ$ (True), and $45^\circ > 15^\circ$ (True).

Thus, $\mathbf{A = 45^\circ}$ and $\mathbf{B = 15^\circ}$.


4. State whether the following are true or false. Justify your answer.

(i) $\sin (A + B) = \sin A + \sin B$.

False.

Justification: Let $A = 60^\circ$ and $B = 30^\circ$.

  • $\text{LHS} = \sin(60^\circ + 30^\circ) = \sin 90^\circ = 1$.
  • $\text{RHS} = \sin 60^\circ + \sin 30^\circ = \frac{\sqrt{3}}{2} + \frac{1}{2} = \frac{\sqrt{3} + 1}{2}$.Since $1 \neq (\sqrt{3} + 1)/2$, the statement is false.

(ii) The value of $\sin \theta$ increases as $\theta$ increases.

True.

Justification: By observing the standard values or the unit circle, as $\theta$ increases from $0^\circ$ to $90^\circ$:

  • $\sin 0^\circ = 0$
  • $\sin 30^\circ = 0.5$
  • $\sin 45^\circ \approx 0.707$
  • $\sin 60^\circ \approx 0.866$
  • $\sin 90^\circ = 1$The value of $\sin \theta$ monotonically increases in the interval $0^\circ \le \theta \le 90^\circ$.

(iii) The value of $\cos \theta$ increases as $\theta$ increases.

False.

Justification: As $\theta$ increases from $0^\circ$ to $90^\circ$, the value of $\cos \theta$ decreases:

  • $\cos 0^\circ = 1$
  • $\cos 30^\circ \approx 0.866$
  • $\cos 60^\circ = 0.5$
  • $\cos 90^\circ = 0$The value of $\cos \theta$ monotonically decreases in the interval $0^\circ \le \theta \le 90^\circ$.

(iv) $\sin \theta = \cos \theta$ for all values of $\theta$.

False.

Justification: This is only true when $\theta = 45^\circ$. For example, if $\theta = 30^\circ$, $\sin 30^\circ = 1/2$ and $\cos 30^\circ = \sqrt{3}/2$. Since $1/2 \neq \sqrt{3}/2$, the statement is false.

(v) $\cot A$ is not defined for $A = 0^\circ$.

True.

Justification: $\cot A = \frac{\cos A}{\sin A}$.

For $A = 0^\circ$, $\cot 0^\circ = \frac{\cos 0^\circ}{\sin 0^\circ} = \frac{1}{0}$. Division by zero is undefined.

Last Updated on November 28, 2025 by Aman Singh

Author

  • Aman Singh

    Aman Singh | M.Sc. Mathematics, RRBMU University Alwar

    A seasoned Mathematics Educator with 7 years of dedicated experience in the field of education. Specializing in simplifying complex mathematical concepts, Aman has a proven track record of helping students master advanced topics. Holds an M.Sc. in Mathematics from RRBMU University, Alwar. Passionate about leveraging conceptual clarity and effective teaching methodologies to drive student success and achievement.

    "Transforming mathematical complexity into conceptual clarity."

    For the past 7 years, Aman Singh has been on a mission to redefine math education. Armed with an M.Sc. in Mathematics from RRBMU University Alwar, Aman brings a deep well of knowledge and seven years of classroom insight to every lesson. Specializing in turning student struggle into genuine mastery, Aman believes math isn't just about numbers—it's about building confidence and problem-solving muscle.