Rbse Solutions for Class 11 maths Chapter 3 Miscellaneous | Trigonometric Functions

Last Updated on November 24, 2025 by Aman Singh

Get detailed, step-by-step solutions for NCERT Class 11 Maths Chapter 3 Miscellaneous Exercise . Master advanced trigonometric proofs involving extensive use of the Sum-to-Product formulas (e.g., $\sin C \pm \sin D$, $\cos C \pm \cos D$) and Half-Angle Identities. Learn how to determine the exact values of $\mathbf{\sin(x/2)}$, $\mathbf{\cos(x/2)}$, and $\mathbf{\tan(x/2)}$ when given $\tan x$, $\cos x$, or $\sin x$ and the corresponding quadrant.

This exercise reviews various trigonometric identities, focusing on Sum-to-Product, Double Angle, and Half-Angle formulas.


Proving Identities (Exercises 1-7)

1. Prove: $\cos 2x \cos \frac{\pi}{13} + \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13} + \cos \frac{9\pi}{13} = 0$

(Note: The question has a typo, the correct identity is $\cos \frac{\pi}{13} + \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13} + \cos \frac{7\pi}{13} + \cos \frac{9\pi}{13} + \cos \frac{11\pi}{13} = 0$. The version presented is likely $\cos \frac{\pi}{13} + \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13} + \cos \frac{7\pi}{13} = 0$. Let’s solve the version provided, assuming $\cos \frac{\pi}{13} + \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13} + \cos \frac{9\pi}{13} = 0$ is the intended question, and use a technique that applies to sequences of cosines.)

This identity involves a series sum of cosines. For a series $\cos \alpha + \cos(\alpha + \beta) + \dots + \cos(\alpha + (n-1)\beta)$, the sum is given by:

$$S = \frac{\cos\left(\alpha + \frac{n-1}{2}\beta\right) \sin\left(\frac{n\beta}{2}\right)}{\sin\left(\frac{\beta}{2}\right)}$$

However, for this specific problem, we look for pairs that sum to $\pi$:

$$\text{LHS} = \cos \frac{\pi}{13} + \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13} + \cos \frac{9\pi}{13}$$

Notice that: $\frac{\pi}{13} + \frac{12\pi}{13} = \pi$.

Let’s rewrite the terms using $\cos(\pi – \theta) = -\cos \theta$.

Since $\frac{13\pi}{13} = \pi$, we know that $\cos \frac{11\pi}{13} = \cos(\pi – \frac{2\pi}{13}) = -\cos \frac{2\pi}{13}$.

Given the problem structure, we look for simplification through the $\cos C + \cos D$ formula. Grouping terms:

$$\text{LHS} = \left(\cos \frac{9\pi}{13} + \cos \frac{\pi}{13}\right) + \left(\cos \frac{5\pi}{13} + \cos \frac{3\pi}{13}\right)$$

Use $\cos C + \cos D = 2 \cos \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$:

Group 1:

$$\cos \frac{9\pi}{13} + \cos \frac{\pi}{13} = 2 \cos \left(\frac{10\pi/13}{2}\right) \cos \left(\frac{8\pi/13}{2}\right) = 2 \cos \frac{5\pi}{13} \cos \frac{4\pi}{13}$$

Group 2:

$$\cos \frac{5\pi}{13} + \cos \frac{3\pi}{13} = 2 \cos \left(\frac{8\pi/13}{2}\right) \cos \left(\frac{2\pi/13}{2}\right) = 2 \cos \frac{4\pi}{13} \cos \frac{\pi}{13}$$

$$\text{LHS} = 2 \cos \frac{5\pi}{13} \cos \frac{4\pi}{13} + 2 \cos \frac{4\pi}{13} \cos \frac{\pi}{13}$$

Factor out $2 \cos \frac{4\pi}{13}$:

$$\text{LHS} = 2 \cos \frac{4\pi}{13} \left(\cos \frac{5\pi}{13} + \cos \frac{\pi}{13}\right)$$

Apply $\cos C + \cos D$ to the term in brackets:

$$\cos \frac{5\pi}{13} + \cos \frac{\pi}{13} = 2 \cos \left(\frac{6\pi/13}{2}\right) \cos \left(\frac{4\pi/13}{2}\right) = 2 \cos \frac{3\pi}{13} \cos \frac{2\pi}{13}$$

$$\text{LHS} = 2 \cos \frac{4\pi}{13} \left(2 \cos \frac{3\pi}{13} \cos \frac{2\pi}{13}\right)$$

$$\text{LHS} = 4 \cos \frac{2\pi}{13} \cos \frac{3\pi}{13} \cos \frac{4\pi}{13}$$

This expression does not equal 0. The original question likely intended a symmetric series which cancels out, such as:

$$\cos \frac{\pi}{13} + \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13} + \dots + \cos \frac{11\pi}{13} = 0$$

Let’s assume the question meant to be $\cos \frac{\pi}{13} + \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13} + \cos \frac{7\pi}{13} = 0$.

If $\cos \frac{\pi}{13} + \cos \frac{3\pi}{13} + \cos \frac{5\pi}{13} + \cos \frac{7\pi}{13} = 0$:

$$C = \left(\cos \frac{7\pi}{13} + \cos \frac{\pi}{13}\right) + \left(\cos \frac{5\pi}{13} + \cos \frac{3\pi}{13}\right)$$

  • $\cos \frac{7\pi}{13} + \cos \frac{\pi}{13} = 2 \cos \frac{4\pi}{13} \cos \frac{3\pi}{13}$
  • $\cos \frac{5\pi}{13} + \cos \frac{3\pi}{13} = 2 \cos \frac{4\pi}{13} \cos \frac{\pi}{13}$$$C = 2 \cos \frac{4\pi}{13} \left(\cos \frac{3\pi}{13} + \cos \frac{\pi}{13}\right)$$$$C = 2 \cos \frac{4\pi}{13} \left(2 \cos \frac{2\pi}{13} \cos \frac{\pi}{13}\right)$$This is still not 0. The identity as written in the book is flawed or a special case is intended that doesn’t simplify.

2. Prove: $(\sin 3x + \sin x) \sin x + (\cos 3x – \cos x) \cos x = 0$

Expand the LHS:

$$\text{LHS} = \sin 3x \sin x + \sin^2 x + \cos 3x \cos x – \cos^2 x$$

Rearrange the terms:

$$\text{LHS} = (\cos 3x \cos x + \sin 3x \sin x) – (\cos^2 x – \sin^2 x)$$

Use the Difference Identity for Cosine: $\cos(A – B) = \cos A \cos B + \sin A \sin B$.

$$\cos 3x \cos x + \sin 3x \sin x = \cos(3x – x) = \cos 2x$$

Use the Double Angle Identity for Cosine: $\cos 2x = \cos^2 x – \sin^2 x$.

$$\text{LHS} = \cos 2x – (\cos 2x)$$

$$\text{LHS} = \mathbf{0} = \text{RHS}$$


3. Prove: $(\cos x + \cos y)^2 + (\sin x – \sin y)^2 = 4 \cos^2 \left(\frac{x + y}{2}\right)$

Expand the squares on the LHS:

$$\text{LHS} = (\cos^2 x + 2 \cos x \cos y + \cos^2 y) + (\sin^2 x – 2 \sin x \sin y + \sin^2 y)$$

Group the squared terms:

$$\text{LHS} = (\cos^2 x + \sin^2 x) + (\cos^2 y + \sin^2 y) + 2 \cos x \cos y – 2 \sin x \sin y$$

Use the Pythagorean Identity ($\cos^2 \theta + \sin^2 \theta = 1$):

$$\text{LHS} = 1 + 1 + 2 (\cos x \cos y – \sin x \sin y)$$

Use the Sum Identity for Cosine: $\cos(A + B) = \cos A \cos B – \sin A \sin B$.

$$\text{LHS} = 2 + 2 \cos(x + y)$$

Factor out 2:

$$\text{LHS} = 2 [1 + \cos(x + y)]$$

Use the Half-Angle Identity form: $1 + \cos 2\theta = 2 \cos^2 \theta$. Here $2\theta = x + y$, so $\theta = \frac{x+y}{2}$.

$$\text{LHS} = 2 \left[2 \cos^2 \left(\frac{x + y}{2}\right)\right]$$

$$\text{LHS} = \mathbf{4 \cos^2 \left(\frac{x + y}{2}\right)} = \text{RHS}$$


4. Prove: $(\cos x – \cos y)^2 + (\sin x – \sin y)^2 = 4 \sin^2 \left(\frac{x – y}{2}\right)$

Expand the squares on the LHS:

$$\text{LHS} = (\cos^2 x – 2 \cos x \cos y + \cos^2 y) + (\sin^2 x – 2 \sin x \sin y + \sin^2 y)$$

Group the squared terms:

$$\text{LHS} = (\cos^2 x + \sin^2 x) + (\cos^2 y + \sin^2 y) – 2 \cos x \cos y – 2 \sin x \sin y$$

Use the Pythagorean Identity ($\cos^2 \theta + \sin^2 \theta = 1$):

$$\text{LHS} = 1 + 1 – 2 (\cos x \cos y + \sin x \sin y)$$

Use the Difference Identity for Cosine: $\cos(A – B) = \cos A \cos B + \sin A \sin B$.

$$\text{LHS} = 2 – 2 \cos(x – y)$$

Factor out 2:

$$\text{LHS} = 2 [1 – \cos(x – y)]$$

Use the Half-Angle Identity form: $1 – \cos 2\theta = 2 \sin^2 \theta$. Here $2\theta = x – y$, so $\theta = \frac{x-y}{2}$.

$$\text{LHS} = 2 \left[2 \sin^2 \left(\frac{x – y}{2}\right)\right]$$

$$\text{LHS} = \mathbf{4 \sin^2 \left(\frac{x – y}{2}\right)} = \text{RHS}$$


5. Prove: $\sin x + \sin 3x + \sin 5x + \sin 7x = 4 \cos x \cos 2x \sin 4x$

Group the terms symmetrically:

$$\text{LHS} = (\sin 7x + \sin x) + (\sin 5x + \sin 3x)$$

Use the $\sin C + \sin D$ Sum-to-Product Formula: $\sin C + \sin D = 2 \sin \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$.

Group 1:

$$\sin 7x + \sin x = 2 \sin \left(\frac{8x}{2}\right) \cos \left(\frac{6x}{2}\right) = 2 \sin 4x \cos 3x$$

Group 2:

$$\sin 5x + \sin 3x = 2 \sin \left(\frac{8x}{2}\right) \cos \left(\frac{2x}{2}\right) = 2 \sin 4x \cos x$$

Substitute back into LHS:

$$\text{LHS} = 2 \sin 4x \cos 3x + 2 \sin 4x \cos x$$

Factor out $2 \sin 4x$:

$$\text{LHS} = 2 \sin 4x (\cos 3x + \cos x)$$

Apply the $\cos C + \cos D$ Sum-to-Product Formula to the term in brackets: $\cos C + \cos D = 2 \cos \left(\frac{C+D}{2}\right) \cos \left(\frac{C-D}{2}\right)$.

$$\cos 3x + \cos x = 2 \cos \left(\frac{4x}{2}\right) \cos \left(\frac{2x}{2}\right) = 2 \cos 2x \cos x$$

Substitute back:

$$\text{LHS} = 2 \sin 4x (2 \cos 2x \cos x)$$

$$\text{LHS} = \mathbf{4 \cos x \cos 2x \sin 4x} = \text{RHS}$$


6. Prove: $\frac{(\sin 7x + \sin 5x) + (\sin 9x + \sin 3x)}{(\cos 7x + \cos 5x) + (\cos 9x + \cos 3x)} = \tan 6x$

We apply the Sum-to-Product Formulas to all four groups.

Numerator:

  • $\sin 7x + \sin 5x = 2 \sin 6x \cos x$
  • $\sin 9x + \sin 3x = 2 \sin 6x \cos 3x$$$\text{Num} = 2 \sin 6x \cos x + 2 \sin 6x \cos 3x = 2 \sin 6x (\cos x + \cos 3x)$$

Denominator:

  • $\cos 7x + \cos 5x = 2 \cos 6x \cos x$
  • $\cos 9x + \cos 3x = 2 \cos 6x \cos 3x$$$\text{Den} = 2 \cos 6x \cos x + 2 \cos 6x \cos 3x = 2 \cos 6x (\cos x + \cos 3x)$$

LHS:

$$\text{LHS} = \frac{2 \sin 6x (\cos x + \cos 3x)}{2 \cos 6x (\cos x + \cos 3x)}$$

Cancel $2$ and $(\cos x + \cos 3x)$ (assuming the expression is non-zero):

$$\text{LHS} = \frac{\sin 6x}{\cos 6x} = \tan 6x = \text{RHS}$$


7. Prove: $\sin 3x + \sin 2x – \sin x = 4 \sin x \cos \frac{x}{2} \cos \frac{3x}{2}$

Group $\sin 3x$ and $-\sin x$:

$$\text{LHS} = (\sin 3x – \sin x) + \sin 2x$$

Use the $\sin C – \sin D$ Sum-to-Product Formula: $\sin C – \sin D = 2 \cos \left(\frac{C+D}{2}\right) \sin \left(\frac{C-D}{2}\right)$.

$$\sin 3x – \sin x = 2 \cos \left(\frac{4x}{2}\right) \sin \left(\frac{2x}{2}\right) = 2 \cos 2x \sin x$$

Substitute back into LHS:

$$\text{LHS} = 2 \cos 2x \sin x + \sin 2x$$

Use the Double Angle Identity $\sin 2x = 2 \sin x \cos x$:

$$\text{LHS} = 2 \cos 2x \sin x + 2 \sin x \cos x$$

Factor out $2 \sin x$:

$$\text{LHS} = 2 \sin x (\cos 2x + \cos x)$$

Apply the $\cos C + \cos D$ Sum-to-Product Formula to the term in brackets:

$$\cos 2x + \cos x = 2 \cos \left(\frac{3x}{2}\right) \cos \left(\frac{x}{2}\right)$$

Substitute back:

$$\text{LHS} = 2 \sin x \left(2 \cos \frac{3x}{2} \cos \frac{x}{2}\right)$$

$$\text{LHS} = \mathbf{4 \sin x \cos \frac{x}{2} \cos \frac{3x}{2}} = \text{RHS}$$


Half-Angle Values (Exercises 8-10)

The Half-Angle Formulas are:

$$\sin \frac{x}{2} = \pm \sqrt{\frac{1 – \cos x}{2}}$$

$$\cos \frac{x}{2} = \pm \sqrt{\frac{1 + \cos x}{2}}$$

$$\tan \frac{x}{2} = \frac{\sin x}{1 + \cos x} = \frac{1 – \cos x}{\sin x}$$

The sign ($\pm$) depends on the quadrant of $\mathbf{x/2}$.

8. $\tan x = -\frac{4}{3}$, $x$ in quadrant II ($\frac{\pi}{2} < x < \pi$)

  1. Determine the quadrant of $x/2$:$$\frac{\pi}{4} < \frac{x}{2} < \frac{\pi}{2}$$$x/2$ is in Quadrant I. All trig functions are positive.
  2. Find $\cos x$:Since $\tan x = -4/3$, we use $1 + \tan^2 x = \sec^2 x$.$$\sec^2 x = 1 + \left(-\frac{4}{3}\right)^2 = 1 + \frac{16}{9} = \frac{25}{9}$$$\sec x = \pm 5/3$. In Q.II, $\cos x$ is negative.$$\cos x = -\frac{3}{5}$$
  3. Find $\sin x$:In Q.II, $\sin x$ is positive. $\sin x = \sqrt{1 – (-3/5)^2} = \sqrt{1 – 9/25} = \sqrt{16/25} = 4/5$.
  4. Calculate Half-Angles (Positive since $x/2$ is in Q.I):$$\sin \frac{x}{2} = \sqrt{\frac{1 – \cos x}{2}} = \sqrt{\frac{1 – (-3/5)}{2}} = \sqrt{\frac{8/5}{2}} = \sqrt{\frac{4}{5}} = \mathbf{\frac{2}{\sqrt{5}}}$$$$\cos \frac{x}{2} = \sqrt{\frac{1 + \cos x}{2}} = \sqrt{\frac{1 + (-3/5)}{2}} = \sqrt{\frac{2/5}{2}} = \sqrt{\frac{1}{5}} = \mathbf{\frac{1}{\sqrt{5}}}$$$$\tan \frac{x}{2} = \frac{\sin (x/2)}{\cos (x/2)} = \frac{2/\sqrt{5}}{1/\sqrt{5}} = \mathbf{2}$$

9. $\cos x = -\frac{1}{3}$, $x$ in quadrant III ($\pi < x < \frac{3\pi}{2}$)

  1. Determine the quadrant of $x/2$:$$\frac{\pi}{2} < \frac{x}{2} < \frac{3\pi}{4}$$$x/2$ is in Quadrant II. $\sin(x/2)$ is positive, $\cos(x/2)$ and $\tan(x/2)$ are negative.
  2. Find $\sin x$:In Q.III, $\sin x$ is negative.$$\sin x = -\sqrt{1 – \left(-\frac{1}{3}\right)^2} = -\sqrt{1 – \frac{1}{9}} = -\sqrt{\frac{8}{9}} = -\frac{2\sqrt{2}}{3}$$
  3. Calculate Half-Angles:$$\sin \frac{x}{2} = +\sqrt{\frac{1 – \cos x}{2}} = \sqrt{\frac{1 – (-1/3)}{2}} = \sqrt{\frac{4/3}{2}} = \sqrt{\frac{2}{3}} = \mathbf{\frac{\sqrt{6}}{3}}$$$$\cos \frac{x}{2} = -\sqrt{\frac{1 + \cos x}{2}} = -\sqrt{\frac{1 + (-1/3)}{2}} = -\sqrt{\frac{2/3}{2}} = -\sqrt{\frac{1}{3}} = \mathbf{-\frac{\sqrt{3}}{3}}$$$$\tan \frac{x}{2} = \frac{\sin (x/2)}{\cos (x/2)} = \frac{\sqrt{2/3}}{-\sqrt{1/3}} = -\sqrt{2} = \mathbf{-\sqrt{2}}$$

10. $\sin x = \frac{1}{4}$, $x$ in quadrant II ($\frac{\pi}{2} < x < \pi$)

  1. Determine the quadrant of $x/2$:$$\frac{\pi}{4} < \frac{x}{2} < \frac{\pi}{2}$$$x/2$ is in Quadrant I. All trig functions are positive.
  2. Find $\cos x$:In Q.II, $\cos x$ is negative.$$\cos x = -\sqrt{1 – \left(\frac{1}{4}\right)^2} = -\sqrt{1 – \frac{1}{16}} = -\sqrt{\frac{15}{16}} = -\frac{\sqrt{15}}{4}$$
  3. Calculate Half-Angles (Positive since $x/2$ is in Q.I):$$\sin \frac{x}{2} = \sqrt{\frac{1 – \cos x}{2}} = \sqrt{\frac{1 – (-\sqrt{15}/4)}{2}} = \sqrt{\frac{4 + \sqrt{15}}{8}} = \mathbf{\frac{\sqrt{4 + \sqrt{15}}}{2\sqrt{2}}}$$$$\cos \frac{x}{2} = \sqrt{\frac{1 + \cos x}{2}} = \sqrt{\frac{1 + (-\sqrt{15}/4)}{2}} = \sqrt{\frac{4 – \sqrt{15}}{8}} = \mathbf{\frac{\sqrt{4 – \sqrt{15}}}{2\sqrt{2}}}$$$$\tan \frac{x}{2} = \frac{\sin x}{1 + \cos x} = \frac{1/4}{1 + (-\sqrt{15}/4)} = \frac{1/4}{(4 – \sqrt{15})/4} = \frac{1}{4 – \sqrt{15}}$$Rationalize:$$\tan \frac{x}{2} = \frac{1}{4 – \sqrt{15}} \times \frac{4 + \sqrt{15}}{4 + \sqrt{15}} = \frac{4 + \sqrt{15}}{16 – 15} = \mathbf{4 + \sqrt{15}}$$

Author

  • Aman Singh

    Aman Singh | M.Sc. Mathematics, RRBMU University Alwar

    A seasoned Mathematics Educator with 7 years of dedicated experience in the field of education. Specializing in simplifying complex mathematical concepts, Aman has a proven track record of helping students master advanced topics. Holds an M.Sc. in Mathematics from RRBMU University, Alwar. Passionate about leveraging conceptual clarity and effective teaching methodologies to drive student success and achievement.

    "Transforming mathematical complexity into conceptual clarity."

    For the past 7 years, Aman Singh has been on a mission to redefine math education. Armed with an M.Sc. in Mathematics from RRBMU University Alwar, Aman brings a deep well of knowledge and seven years of classroom insight to every lesson. Specializing in turning student struggle into genuine mastery, Aman believes math isn't just about numbers—it's about building confidence and problem-solving muscle.