Rbse Solutions to Class 6 Chapter 7: Fractions

Rbse Solutions to Class 6 Chapter 7: Fractions

Posted by

Chapter 7 of the RBSE Class 6 Maths syllabus focuses on Fractions, an essential concept in mathematics that represents a part of a whole. Understanding fractions is crucial as they are used in various real-life situations, from cooking to dividing resources. This chapter covers the types of fractions, how to perform operations with them, and their applications.


Key Concepts Covered in Chapter 7

  • Definition of fractions
  • Types of fractions (proper, improper, and mixed fractions)
  • Equivalent fractions
  • Simplifying fractions
  • Addition and subtraction of fractions
  • Multiplication and division of fractions
Rbse Solutions to Class 6 Chapter 7: Fractions

NCERT Solutions to Class 6 Chapter 7: Fractions Exercise 7.1

1. Write the fraction representing the shaded portion.

NCERT Solutions for CLass 6 Maths Chapter 7 Exercise 7.1 - 1

Solutions:

(i) Number of parts = 4

Shaded portion = 2

∴ Fraction = 2 / 4

(ii) Number of parts = 9

Shaded portion = 8

∴ Fraction = 8 / 9

(iii) Number of parts = 8

Shaded portion = 4

∴ Fraction = 4 / 8

(iv) Number of parts = 4

Shaded portion = 1

∴ Fraction = 1 / 4

(v) Number of parts = 7

Shaded portion = 3

∴ Fraction = 3 / 7

(vi) Number of parts = 12

Shaded portion = 3

∴ Fraction = 3 / 12

(vii) Number of parts = 10

Shaded portion = 10

∴ Fraction = 10 / 10

(viii) Number of parts = 9

Shaded portion = 4

∴ Fraction = 4 / 9

(ix) Number of parts = 8

Shaded portion = 4

∴ Fraction = 4 / 8

(x) Number of parts = 2

Shaded portion = 1

∴ Fraction = 1 / 2

2. Colour the part according to the given fraction.

NCERT Solutions for Class 6 Maths Chapter 7 Exercise 7.1 - 2

Solutions:

NCERT Solutions for Class 6 Maths Chapter 7 Exercise 7.1 - 3

3. Identify the error, if any.

NCERT Solutions for Class 6 Maths Chapter 7 Exercise 7.1 - 4

Solutions:

(i) The shaded portion is not half

Hence, this is not 1 / 2

(ii) Since the parts are not equal

The shaded portion is not 1 / 4

(iii) Since the parts are not equal

∴ The shaded portion is not 3 / 4

4. What fraction of a day is 8 hours?

Solutions:

There are 24 hours in a day

We have 8 hours

Hence, the required fraction is 8 / 24

5. What fraction of an hour is 40 minutes?

Solutions:

There are 60 minutes in 1 hour

∴ 1 hour = 60 minutes

Hence, the required fraction = 40 / 60

6. Arya, Abhimanyu, and Vivek shared lunch. Arya has brought two sandwiches, one made of vegetables and one of jam. The other two boys forgot to bring their lunch. Arya agreed to share his sandwiches so that each person would have an equal share of each sandwich.

(a) How can Arya divide his sandwiches so that each person has an equal share?

(b) What part of a sandwich will each boy receive?

Solutions:

(a) Arya has divided the sandwich into 3 equal parts. So each person will get one part.

(b) Each boy receives 1 / 3 part

∴ The required fraction is 1 / 3

7. Kanchan dyes dresses. She had to dye 30 dresses. She has so far finished 20 dresses. What fraction of dresses has she finished?

Solutions:

Total number of dresses Kanchan has to dye = 30 dresses

Number of dresses she has finished = 20 dresses

∴ The required fraction = 20 / 30 = 2 / 3

8. Write the natural numbers from 2 to 12. What fraction of them are prime numbers?

Solutions:

Natural numbers from 2 to 12 are

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12

Total number of natural numbers given = 11

Number of prime numbers = 5

∴ The required fraction = 5 / 11

9. Write the natural numbers from 102 to 113. What fraction of them are prime numbers?

Solutions:

Natural numbers from 102 to 113 are

102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113

Total number of natural numbers given = 12

Number of prime numbers = 4 [103, 107, 109, 113]

∴ The required fraction = 4 / 12 = 1 / 3

10. What fraction of these circles has X’s in them?

NCERT Solutions for Class 6 Maths Chapter 7 Exercise 7.1 - 5

Solutions:

Total number of circles in the figure = 8

Number of circles having Xs in them = 4

∴ The required fraction = 4 / 8 = 1 / 2

11. Kristin received a CD player for her birthday. She bought 3 CDs and received 5 others as gifts. What fraction of the total CDs did she buy, and what fraction did she receive as gifts?

Solutions:

Number of CDs Kristin bought from the market = 3

Number of CDs received as gifts = 5

Total number of CDs Kristin has = 3 + 5 = 8

∴ Fraction of CD she bought = 3 / 8

∴ The fraction of CDs received as gifts = 5 / 8

NCERT Solutions for Class 6 Chapter 7: Fractions Exercise 7.2

1. Draw number lines and locate the points on them:

(a) 1 / 2, 1 / 4, 3 / 4, 4 / 4

(b) 1 / 8, 2 / 8, 3 / 8, 7 / 8

(c) 2 / 5, 3 / 5, 8 / 5, 4 / 5

Solutions:

(a) 1 / 2, 1 / 4, 3 / 4, 4 / 4

NCERT Solutions for Class 6 Maths Chapter 7 Exercise 7.2 - 1

Here, divide the number line from 0 to 1 into four equal parts

C = 2 / 4 = 1 / 2

B = 1 / 4

D = 3 / 4 and

E = 4 / 4 = 1

(b) 1 / 8, 2 / 8, 3 / 8, 7 / 8

NCERT Solutions for Class 6 Maths Chapter 7 Exercise 7.2 - 2

Divide the number line from 0 to 1 into eight equal parts

B = 1 / 8

C = 2 / 8

D = 3 / 8

H = 7 / 8

(c) 2 / 5, 3 / 5, 8 / 5, 4 / 5

NCERT Solutions for Class 6 Maths Chapter 7 Exercise 7.2 - 3

From the given number line, we have

C = 2 / 5

D = 3 / 5

E = 4 / 5

I = 8 / 5

2. Express the following as mixed fractions:

(a) 20 / 3

(b) 11 / 5

(c) 17 / 7

(d) 28 / 5

(e) 19 / 6

(f) 35 / 9

Solutions:

(a) 20 / 3

NCERT Solutions for Class 6 Maths Chapter 7 Exercise 7.2 - 4

∴ 20 / 3 =NCERT Solutions for Class 6 Maths Chapter 7 Exercise 7.2 - 5

(b) 11 / 5

NCERT Solutions for Class 6 Maths Chapter 7 Exercise 7.2 - 6

∴ 11 / 5 =NCERT Solutions for Class 6 Maths Chapter 7 Exercise 7.2 - 7

(c) 17 / 7

∴ 17 / 7 =NCERT Solutions for Class 6 Maths Chapter 7 Exercise 7.2 - 9
NCERT Solutions for Class 6 Maths Chapter 7 Exercise 7.2 - 8

(d) 28 / 5

NCERT Solutions for Class 6 Maths Chapter 7 Exercise 7.2 - 10

∴ 28 / 5 =NCERT Solutions for Class 6 Maths Chapter 7 Exercise 7.2 - 11

(e) 19 / 6

NCERT Solutions for Class 6 Maths Chapter 7 Exercise 7.2 - 12

∴ 19 / 6 =NCERT Solutions for Class 6 Maths Chapter 7 Exercise 7.2 - 13

(f) 35 / 9

∴ 35 / 9 =NCERT Solutions for Class 6 Maths Chapter 7 Exercise 7.2 - 15
NCERT Solutions for Class 6 Maths Chapter 7 Exercise 7.2 - 14

3. Express the following as improper fractions:

(a) 

(b) 

(c) 

(d) 

(e) 

(f) 

Solutions:

(a) (7 × 4 + 3) / 4 = 31 / 4

∴ The improper form is 31 / 4

(b) (5 × 7 + 6) / 7 = 41 / 7

∴ The improper form is 41 / 7

(c) (2 × 6 + 5) / 6 = 17 / 6

∴ The improper form is 17 / 6

(d) (10 × 5 + 3) / 5 = 53 / 5

∴ The improper form is 53 / 5

(e) (9 × 7 + 3) / 7 = 66 / 7

∴ The improper form is 66 / 7

(f) (8 × 9 + 4) / 9 = 76 / 9

∴ The improper form is 76 / 9

NCERT Solutions for Class 6 Chapter 7: Fractions Exercise 7.3

1. Write the fractions. Are all these fractions equivalent?

NCERT Solutions for Class 6 Maths Chapter 7 Exercise 7.3 - 1

Solutions:

(a)

(i) The shaded portion is 1 / 2

(ii) The shaded portion is 2 / 4 = (2 / 2) / (4 / 2) = 1 / 2

(iii) The shaded portion is 3 / 6 = (3 / 3) / (6 / 3) = 1 / 2

(iv) The shaded portion is 4 / 8 = (4 / 4) / (8 / 4) = 1 / 2

Hence, all fractions are equivalent.

(b)

(i) The shaded portion is 4 / 12 = (4 / 4) / (12 / 4) = 1 / 3

(ii)The shaded portion is 3 / 9 = (3 / 3) / (9 / 3) = 1 / 3

(iii) The shaded portion is 2 / 6 = (2 / 2) / (6 / 2) = 1 / 3

(iv) The shaded portion is 1 / 3

(v) The shaded portion is 6 / 15 = (6 / 3) / (15 / 3) = 2 / 5

All the fractions in their simplest form are not equal

Hence, they are not equivalent fractions.

2. Write the fractions and pair up the equivalent fractions from each row.

NCERT Solutions for Class 6 Maths Chapter 7 Exercise 7.3 - 2

Solutions:

(a) 1 / 2

(b) 4 / 6 = (4 / 2) / (6 / 2)

= 2 / 3

(c) 3 / 9 = (3 / 3) / (9 / 3)

= 1 / 3

(d) 2 / 8 = (2 / 2) / (8 / 2)

= 1 / 4

(e) 3 / 4

(i) 6 / 18 = (6 / 6) / (18 / 6)

= 1 / 3

(ii) 4 / 8 = (4 / 4) / (8 / 4)

= 1 / 2

(iii) 12 / 16 = (12 / 4) / (16 / 4)

= 3 / 4

(iv) 8 / 12 = (8 / 4) / (12 / 4)

= 2 / 3

(v) 4 / 16 = (4 / 4) / (16 / 4)

= 1 / 4

The following are the equivalent fractions

(a) and (ii) = 1 / 2

(b) and (iv) = 2 / 3

(c) and (i) = 1 / 3

(d) and (v) = 1 / 4

(e) and (iii) = 3 / 4

3. Replace  in each of the following with the correct number:

(a) 2 / 7 = 8 / 

(b) 5 / 8 = 10 / ☐

(c) 3 / 5 = ☐ / 20

(d) 45 / 60 = 15 / ☐

(e) 18 / 24 = ☐ / 4

Solutions:

(a) Given

2 / 7 = 8 / 

2 × ☐ = 7 × 8

☐ = (7 × 8) / 2

= 28

(b) Given

5 / 8 = 10 / ☐

☐ = (8 × 10) / 5

= 16

(c) Given

3 / 5 = ☐ / 20

☐ = (3 × 20) / 5

= 12

(d) Given

45 / 60 = 15 / ☐

☐ = (15 × 60) / 45

= 20

(e) Given

18 / 24 = ☐ / 4

☐ = (18 × 4) / 24

= 3

4. Find the equivalent fraction of 3 / 5 having

(a) denominator 20

(b) numerator 9

(c) denominator 30

(d) numerator 27

Solutions:

(a) We require denominator 20

Let M be the numerator of the fractions

∴ M / 20 = 3 / 5

5 × M = 20 × 3

M = (20 × 3) / 5

= 12

Therefore, the required fraction is 12 / 20

(b) We require numerator 9

Let N be the denominator of the fractions

∴ 9 / N = 3 / 5

3 × N = 9 × 5

N = (9 × 5) / 3

= 15

Therefore the required fraction is 9 / 15

(c) We require denominator 30

Let D be the numerator of the fraction

∴ D / 30 = 3 / 5

5 × D = 3 × 30

D = (3 × 30) / 5

= 18

Therefore the required fraction is 18 / 30

(d) We require numerator 27

Let N be the denominator of the fraction

∴ 27 / N = 3 / 5

3 × N = 5 × 27

N = (5 × 27) / 3

= 45

Therefore the required fraction is 27 / 45

5. Find the equivalent fraction of 36 / 48 with

(a) numerator 9

(b) denominator 4

Solutions:

(a) Given numerator = 9

∴ 9 / D = 36 / 48

D × 36 = 9 × 48

D = (9 × 48) / 36

D = 12

Hence, the equivalent fraction is 9 / 12

(b) Given, denominator = 4

∴ N / 4 = 36 / 48

N × 48 = 4 × 36

N = (4 × 36) / 48

= 3

Hence, the equivalent fraction is 3 / 4

6. Check whether the given fractions are equivalent:

(a) 5 / 9, 30 / 54

(b) 3 / 10, 12 / 50

(c) 7 / 13, 5 / 11

Solutions:

(a) Given 5 / 9 and 30 / 54

We have 5× 54 = 270

9 × 30 = 270

5 × 54 = 9 × 30

Hence, 5 / 9 and 30 / 54 are equivalent fractions

(b) Given 3 / 10 and 12 / 50

We have 3 × 50 = 150

10 × 12 = 120

3 × 50 ≠ 10 × 12

Hence, 3 / 10 and 12 / 50 are not equivalent fractions

(c) Given 7 / 13 and 5 / 11

We have 7 × 11 = 77

5 × 13 = 65

7 × 11 ≠ 5 × 13

Hence, 7 / 13 and 5 / 11 are not equivalent fractions

7. Reduce the following fractions to the simplest form:

(a) 48 / 60

(b) 150 / 60

(c) 84 / 98

(d) 12 / 52

(e) 7 / 28

Solutions:

(a) 48 / 60 = (12 × 4) / (12 × 5)

= 4 / 5

(b) 150 / 60 = (30 × 5) / (30 × 2)

= 5 / 2

(c) 84 / 98 = (14 × 6) / (14 × 7)

= 6 / 7

(d) 12 / 52 = (3 × 4) / (13 × 4)

= 3 / 13

(e) 7 / 28 = 7 / (7 × 4)

= 1 / 4

8. Ramesh had 20 pencils, Sheelu had 50 pencils, and Jamaal had 80 pencils. After 4 months, Ramesh used up 10 pencils, Sheelu used up 25 pencils, and Jamaal used up 40 pencils. What fraction did each use up? Check if each has used up an equal fraction of their pencils.

Solutions:

Total number of pencils Ramesh had = 20

Number of pencils used by Ramesh = 10

∴ Fraction = 10 / 20 = 1 / 2

Total number of pencils Sheelu had = 50

Number of pencils used by Sheelu = 25

∴ Fraction = 25 / 50 = 1 / 2

Total number of pencils Jamaal had = 80

Number of pencils used by Jamaal = 40

∴ Fraction = 40 / 80 = 1 / 2

Therefore, each has used up an equal fraction of pencils, i.e. 1 / 2

9. Match the equivalent fractions and write two more for each.

(i) 250 / 400 (a) 2 / 3

(ii) 180 / 200 (b) 2 / 5

(iii) 660 / 990 (c) 1 / 2

(iv) 180 / 360 (d) 5 / 8

(v) 220 / 550 (e) 9 / 10

Solutions:

(i) 250 / 400

= (5 × 50) / (8 × 50)

= 5 / 8

25 / 40 and 30 / 48 are two more fractions

(ii) 180 / 200

= (9 × 20) / (10 × 20)

= 9 / 10

18 / 20 and 27 / 30 are two more fractions

(iii) 660 / 990

= (2 × 330) / (3 × 330)

= 2 / 3

20 / 30 and 200 / 300 are two more fractions

(iv) 180 / 360

= (1 × 180) / (2 × 180)

= 1 / 2

20 / 40 and 30 / 60 are two more fractions

(v) 220 / 550

= (2 × 110) / (5 × 110)

= 2 / 5

20 / 50 and 40 / 100 are two more fractions

∴ The equivalent fractions are

(i) 250 / 100 = (d) 5 / 8

(ii) 180 / 200 = (e) 9 / 10

(iii) 660 / 990 = (a) 2 / 3

(iv) 180 / 360 = (c) 1 / 2

(v) 220 / 550 = (b) 2 / 5

NCERT Solutions for Class 6 Chapter 7: Fractions Exercise 7.4

1. Write the shaded portion as a fraction. Arrange them in ascending and descending order using correct sign ‘’ between the fractions:

NCERT Solutions for Class 6 Maths Chapter 7 Exercise 7.4 - 1

(c) Show 2 / 6, 4 / 6, 8 / 6 and 6 / 6 on the number line. Put appropriate signs between the fractions given.

5 / 6 ☐ 2 / 6, 3 / 6 ☐ 0, 1 / 6 ☐ 6 / 6, 8 / 6 ☐ 5 / 6

Solutions:

(a) The first circle shows 3 shaded parts out of 8 equal parts. Hence, the fraction is 3 / 8

The second circle shows 6 shaded parts out of 8 equal parts. Hence, the fraction is 6 / 8

The third circle shows 4 shaded parts out of 8 equal parts. Hence, the fraction is 4 / 8

The fourth circle shows 1 shaded part out of 8 equal parts. Hence, the fraction is 1 / 8

The arranged fractions are:

1 / 8 < 3 / 8 < 4 / 8 < 6 / 8

(b) The first square shows 8 shaded parts out of 9 equal parts. Hence, the fraction is 8 / 9

The second square shows 4 shaded parts out of 9 equal parts. Hence, the fraction is 4 / 9

The third square shows 3 shaded parts out of 9 equal parts. Hence, the fraction is 3 / 9

The fourth square shows 6 shaded parts out of 9 equal parts. Hence, the fraction is 6 / 9

The arranged fractions are:

3 / 9 < 4 / 9 < 6 / 9 < 8 / 9

(c) Each unit length should be divided into 6 equal parts to represent the fractions 2 / 6, 4 / 6, 8 / 6 and

6 / 6 on number line. These fractions can be represented as follows:

NCERT Solutions for Class 6 Maths Chapter 7 Exercise 7.4 - 2

5 / 6 > 2 / 6

3 / 6 > 0

1 / 6 < 6 / 6

8 / 6 > 5 / 6

2. Compare the fractions and put an appropriate sign.

(a) 3 / 6 ☐ 5 / 6

(b) 1 / 7 ☐ 1 / 4

(c) 4 / 5 ☐ 5 / 5

(d) 3 / 5 ☐ 3 / 7

Solutions:

(a) Here both fractions have the same denominators. So, the fraction with the greater numerator is the highest factor

∴ 3 / 6 < 5 / 6

(b) Multiply by 4

1 / 7 = (1 × 4) / (7 × 4)

= 4 / 28

Multiply by 7

1 / 4 = (1 × 7) / (4 × 7)

= 7 / 28

Here 4 < 7

∴ 1 / 7 < 1 / 4

(c) Here both fractions have the same denominators. So, the fraction with the greater numerator is the highest factor

∴ 4 / 5 < 5 / 5

(d) Here both numerators are the same. So, the fraction having less denominator will be the highest factor

∴ 3 / 7 < 3 / 5

3. Make five more such pairs and put appropriate signs.

Solutions:

(a) 5 / 8 < 6 / 8

Here, the denominators are the same. So, the fraction having greater numerator is the highest factor

(ii) 5 / 8 > 2 / 8

Here, the denominators are the same. So, the fraction having greater numerator is the highest factor

(iii) 6 / 13 > 6 / 18

Here, the numerators are the same. So, the fraction having lesser denominator will be the highest factor

(iv) 5 / 25 > 3 / 25

Here, the denominators are the same. So, the fraction having greater numerator is the highest factor

(v) 9 / 50 < 9 / 45

Here, the numerators are the same. So, the fraction having lesser denominator will be the highest factor

4. Look at the figures and write ‘<’ or ‘>’, ‘=’ between the given pairs of fractions.

NCERT Solutions for Class 6 Maths Chapter 7 Exercise 7.4 - 3

(a) 1 / 6 ☐ 1 / 3

(b) 3 / 4 ☐ 2 / 6

(c) 2 / 3 ☐ 2 / 4

(d) 6 / 6 ☐ 3 / 3

(e) 5 / 6 ☐ 5 / 5

Solutions:

(a) Here, the numerators are the same. So, the fraction having lesser denominator is greater

∴ 1 / 6 < 1 / 3

(b) 3 / 4 = (3 × 3) / (4 × 3)

= 9 / 12

2 / 6 = (2 × 2) / (6 × 2)

= 4 / 12

Between 4 / 12, 9 / 12

Both fractions have the same denominators. So, the fraction having greater numerator will be greater

∴ 9 / 12 > 4 / 12

3 / 4 > 2 / 6

(c) Here, the numerators are the same. So, the fraction having lesser denominator is greater

∴ 2 / 3 > 2 / 4

(d) We get 6 / 6 = 1 and 3 / 3 = 1

So, 6 / 6 = 3 / 3

(e) Here, the numerators are the same. So, the fraction having lesser denominator is greater

∴ 5 / 6 < 5 / 5

5. How quickly can you do this? Fill appropriate sign. ( ‘<’, ‘=’, ‘>’)

(a) 1 / 2 ☐ 1 / 5

(b) 2 / 4 ☐ 3 / 6

(c) 3 / 5 ☐ 2 / 3

(d) 3 / 4 ☐ 2 / 8

(e) 3 / 5 ☐ 6 / 5

(f) 7 / 9 ☐ 3 / 9

(g) 1 / 4 ☐ 2 / 8

(h) 6 / 10 ☐ 4 / 5

(i) 3 / 4 ☐ 7 / 8

(j) 6 / 10 ☐ 3 / 5

(k) 5 / 7 ☐ 15 / 21

Solutions:

(a) Here, the numerators are the same. So, the fraction having lesser denominator is greater

∴ 1 / 2 > 1 / 5

(b) 2 / 4 = 1 / 2 and 3 / 6 = 1 / 2

∴ 2 / 4 = 3 / 6

(c) 3 / 5 = (3 × 3) / (5 × 3)

= 9 / 15

2 / 3 = (2 × 5) / 3 × 5)

= 10 / 15

Here, between 9 / 15 and 10 / 15 both have the same denominators. Hence, the fraction having greater numerator will be greater.

∴ 3 / 5 < 2 / 3

(d) Here, 2 / 8 = 1 / 4

As, 3 / 4 and 1 / 4 have the same denominators. Hence, the fraction having greater numerator will be greater

∴ 3 / 4 > 2 / 8

(e) Here, the denominators are the same. So, the fraction having greater numerator will be greater

∴ 3 / 5 < 6 / 5

(f) Here, the denominators are the same. So, the fraction having greater numerator will be greater

∴ 7 / 9 > 3 / 9

(g) We know 2 / 8 = 1 / 4

Hence, 1 / 4 = 2 / 8

(h) 6 / 10 = (3 × 2) / (5 × 2)

= 3 / 5

Between 3 / 5 and 4 / 5

Both have the same denominators. So, the fraction having greater numerator will be greater

∴ 6 / 10 < 4 / 5

(i) 3 / 4 = (3 × 2) / (4 × 2)

= 6 / 8

Between 6 / 8 and 7 / 8

Both have same denominators. So, the fraction having greater numerator will be greater

∴ 3 / 4 < 7 / 8

(j) 6 / 10 = (3 × 2) / (5 × 2)

= 3 / 5

∴ 6 / 10 = 3 / 5

(k) 5 / 7 = (5 × 3) / (7 × 3)

= 15 / 21

∴ 5 / 7 = 15 / 21

6. The following fractions represent just three different numbers. Separate them into three groups of equivalent fractions, by changing each one to its simplest form.

(a) 2 / 12 (b) 3 / 15 (c) 8 / 50 (d) 16 / 100 (e) 10 / 60 (f) 15 / 75

(g) 12 / 60 (h) 16 / 96 (i) 12 / 75 (j) 12 / 72 (k) 3 / 18 (l) 4 / 25

Solutions:

(a) 2 / 12 = (1 × 2) / (6 × 2)

= 1 / 6

(b) 3 / 15 = (1 × 3) / (5 × 3)

= 1 / 5

(c) 8 / 50 = (4 × 2) / (25 × 2)

= 4 / 25

(d) 16 / 100 = (4 × 4) / (25 × 4)

= 4 / 25

(e) 10 / 60 = (1 × 10) / (6 × 10)

= 1 / 6

(f) 15 / 75 = (1 × 15) / (5 × 15)

= 1 / 5

(g) 12 / 60 = (1 × 12) / (5 × 12)

= 1 / 5

(h) 16 / 96

= (1 × 16) / (6 × 16)

= 1 / 6

(i) 12 / 75 = (4 × 3) / (25 × 3)

= 4 / 25

(j) 12 / 72 = (1 × 12) / 6 × 12)

= 1 / 6

(k) 3 / 18 = (1 × 3) / (6 × 3)

= 1 / 6

(l) 4 / 25

Totally there are 3 groups of equivalent fractions.

1 / 6 = (a), (e), (h), (j), (k)

1 / 5 = (b), (f), (g)

4 / 25 = (c), (d), (i), (l)

7. Find answers to the following. Write and indicate how you solved them.

(a) Is 5 / 9 equal to 4 / 5?

(b) Is 9 / 16 equal to 5 / 9?

(c) Is 4 /5 equal to 16 / 20?

(d) Is 1 / 15 equal to 4 / 30?

Solutions:

(a) 5 / 9, 4 / 5

Convert these fractions into like fractions

5 / 9 = (5 / 9) × (5 / 5)

= 25 / 45

4 / 5 = (4 / 5) × (9 / 9)

= 36 / 45

∴ 25 / 45 ≠ 36 / 45

Hence, 5 / 9 is not equal to 4 / 5

(b) 9 / 16, 5 / 9

Convert into like fractions

9 / 16 = (9 / 16) × (9 / 9)

= 81 / 144

5 / 9 = (5 / 9) × (16 / 16)

= 80 / 144

∴ 81 / 144 ≠ 80 / 144

Hence, 9 / 16 is not equal to 5 / 9

(c) 4 / 5, 16 / 20

16 / 20 = (4 × 4) / (5 × 4)

= 4 / 5

∴ 4 / 5 = 16 / 20

Hence, 4 / 5 is equal to 16 / 20

(d) 1 / 15, 4 / 30

4 / 30 = (2 × 2) / (15 × 2)

= 2 / 15

∴ 1 / 15 ≠ 4 / 30

Hence, 1 / 15 is not equal to 4 / 30

8. Ila read 25 pages of a book containing 100 pages. Lalita read 2 / 5 of the same book. Who read less?

Solutions:

Total number of pages a book has = 100 pages

Lalita read = 2 / 5 × 100 = 40 pages

Ila read = 25 pages

∴ Ila read less than Lalita.

9. Rafiq exercised for 3 / 6 of an hour, while Rohit exercised for 3 / 4 of an hour. Who exercised for a longer time?

Solutions:

Rafiq exercised = 3 / 6 of an hour

Rohit exercised = 3 / 4 of a hour

3 / 6, 3 / 4

Convert these into like fractions

3 / 6 = (3 × 2) / (6 × 2)

= 6 / 12

3 / 4 = (3 × 3) / (4 × 3)

= 9 / 12

Clearly, 9 / 12 > 6 / 12

∴ 3 / 4 > 3 / 6

Therefore, Rohit exercised for a longer time than Rafiq.

10. In a class A of 25 students, 20 passed with 60% or more marks; in another class B of 30 students, 24 passed with 60% or more marks. In which class was a greater fraction of students getting 60% or more marks?

Solutions:

Total number of students in Class A = 25

Students passed in first class in Class A = 20

Hence, fraction = 20 / 25

= 4 / 5

Total number of students in Class B = 30

Students passed in first class in Class B = 24

Hence, fraction = 24 / 30

= 4 / 5

∴ An equal fraction of students passed in first class in both the classes

NCERT Solutions for Class 6 Chapter 7: Fractions Exercise 7.5

1. Write these fractions appropriately as additions or subtractions:

NCERT Solutions for Class 6 Maths Chapter 7 Exercise 7.5 - 1

Solutions:

(a) Total number of parts each rectangle has = 5

No. of shaded parts in the first rectangle = 1, i.e., 1 / 5

No. of shaded parts in the second rectangle = 2, i.e., 2 / 5

No. of shaded parts in the third rectangle = 3, i.e., 3 / 5

Clearly, the fraction represented by the third rectangle = Sum of the fractions represented by the first and second rectangles

Hence, 1 / 5 + 2 / 5 = 3 / 5

(b) Total number of parts each circle has = 5

We may observe that the first, second and third circles represent 5, 3 and 2 shaded parts out of 5 equal parts, respectively. Clearly, the fraction represented by the third circle is the difference between the fractions represented by the first and second circles.

Hence, 5 / 5 – 3 / 5 = 2 / 5

(c) Here, we may observe that the first, second and third rectangles represent 2, 3 and 5 shaded parts out of 6 equal parts, respectively. Clearly, the fraction represented by the third rectangle is the sum of fractions represented by the first and second rectangles.

Hence, 2 / 6 + 3 / 6 = 5 / 6

2. Solve:

(a) 1 / 18 + 1 / 18

(b) 8 / 15 + 3 / 15

(c) 7 / 7 – 5 / 7

(d) 1 / 22 + 21 / 22

(e) 12 / 15 – 7 / 15

(f) 5 / 8 + 3 / 8

(g) 1 – 2 / 3 (1 = 3 / 3)

(h) 1 / 4 + 0 / 4

(i) 3 – 12 / 5

Solutions:

(a) 1 / 18 + 1 / 18

= (1 + 1) / 18

= 2 / 18

= 1 / 9

(b) 8 / 15 + 3 / 15

= (8 + 3) / 15

= 11 / 15

(c) 7 / 7 – 5 / 7

= (7 – 5) / 7

= 2 / 7

(d) 1 / 22 + 21 / 22

= (1 + 21) / 22

= 22 / 22

= 1

(e) 12 /15 – 7 / 15

= (12 – 7) / 15

= 5 / 15

= 1 / 3

(f) 5 / 8 + 3 / 8

= (5 + 3) / 8

= 8 / 8

= 1

(g) 1 – 2 / 3

= 3 / 3 – 2 / 3

= (3 – 2) / 3

= 1 / 3

(h) 1 / 4 + 0

= 1/ 4

(i) 3 – 12 / 5

= 15 / 5 – 12/ 5

= (15 – 12) / 5

= 3 / 5

3. Shubham painted 2 / 3 of the wall space in his room. His sister Madhavi helped and painted 1 / 3 of the wall space. How much did they paint together?

Solutions:

Wall space painted by Shubham in a room = 2 / 3

Wall space painted by Madhavi in a room = 1 / 3

Total space painted by both = (2 / 3 + 1 / 3)

= (2 + 1) / 3

= 3 / 3

= 1

∴ Shubham and Madhavi together painted 1 complete wall in a room.

4. Fill in the missing fractions.

(a) 7 / 10 – ▯ = 3 / 10

(b) ▯ – 3 / 21 = 5 / 21

(c) ▯ – 3 / 6 = 3 / 6

(d) ▯ + 5 / 27 = 12 / 27

Solutions:

(a) Given 7 / 10 – ▯ = 3 / 10

▯ = 7 / 10 – 3 / 10

▯ = (7 – 3) / 10

▯ = 4 / 10

▯ = 2 / 5

(b) Given ▯ – 3 / 21 = 5 / 21

▯ = 5 / 21 + 3 / 21

▯ = (5 + 3) / 21

▯ = 8 / 21

(c) Given ▯ – 3 / 6 = 3 / 6

▯ = 3 / 6 + 3 / 6

▯ = (3 + 3) / 6

▯ = 6 / 6

▯ = 1

(d) Given ▯ + 5 / 27 = 12 / 27

▯ = 12 / 27 – 5 /27

▯ = (12 – 5) / 27

▯ = 7 /27

5. Javed was given 5 / 7 of a basket of oranges. What fraction of oranges was left in the basket?

Solutions:

Fraction of oranges given to Javed = 5 / 7

Fraction of oranges left in the basket = 1 – 5 / 7

= 7 / 7 – 5 / 7

= (7 – 5) / 7

= 2 / 7

NCERT Solutions for Class 6 Chapter 7: Fractions Exercise 7.6

1. Solve

(a) 2 / 3 + 1 / 7

(b) 3 / 10 + 7 / 15

(c) 4 / 9 + 2 / 7

(d) 5 / 7 + 1 / 3

(e) 2 / 5 + 1 / 6

(f) 4 / 5 + 2 / 3

(g) 3 / 4 – 1 / 3

(h) 5 / 6 – 1 / 3

(i) 2 / 3 + 3 / 4 + 1 / 2

(j) 1/ 2 + 1 / 3 + 1 / 6

(k) 

(l) 

(m) 16 / 5 – 7 / 5

(n) 4 / 3 – 1 / 2

Solutions:

(a) 2 / 3 + 1/ 7

Taking LCM[(2 × 7) + (1 × 3)] / 21

= (14 + 3) / 21

= 17 / 21

(b) 3 / 10 + 7 / 15

Taking LCM 30,

= [(3 × 3) + (7 × 2)] / 30

= (9 + 14) / 30

= 23 / 30

(c) 4 / 9 + 2/ 7

Taking LCM 63,

= [(4 × 7) + (2 × 9)] / 63

= (28 + 18) / 63

= 46 / 63

(d) 5 / 7 + 1 / 3

Taking LCM 21,

= [(5 × 3) + (1 × 7)] / 21

= (15 + 7) / 21

= 22 / 21

(e) 2 / 5 + 1 / 6

Taking LCM 30,

= [(2 × 6) + (1 × 5)] / 30

= (12 + 5) / 30

= 17 / 30

(f) 4 / 5 + 2 / 3

Taking LCM 15,

= [(4 × 3) + (2 × 5)] / 15

= (12 + 10) / 15

= 22 / 15

(g) 3 / 4 – 1 / 3

Taking LCM 12,

= [(3 × 3) – (1 × 4)] / 12

= (9 – 4) / 12

= 5 / 12

(h) 5 / 6 – 1 / 3

Taking LCM 6,

= [(5 × 1) – (1 × 2)] / 6

= (5 – 2) / 6

= 3 / 6

= 1 / 2

(i) 2 / 3 + 3 / 4 + 1 / 2

Taking LCM 12,

= [(2 × 4) + (3 × 3) + (1 × 6)] / 12

= (8 + 9 + 6) / 12

= 23 / 12

(j) 1 / 2 + 1 / 3 + 1 / 6

Taking LCM 6,

= [(1 × 3) + (1 × 2) + (1 × 1)] / 6

= (3 + 2 + 1) / 6

= 6 / 6

= 1

(k) 

= [(3 × 1) + 1] / 3 + [(3 × 3) + 2] / 3

= (3 + 1) / 3 + (9 + 2) / 3

= 4/ 3 + 11 / 3

= (4 + 11) / 3

= 15 / 3

= 5

(l) 

= [(3 × 4) + 2] / 3 + [(3 × 4) + 1] / 4

= 14 / 3 + 13 / 4

= [(14 × 4) + (13 × 3)] / 12

= (56 + 39) / 12

= 95 / 12

(m) 16 / 5 – 7 / 5

= (16 – 7) / 5

= 9 / 5

(n) 4 /3 – 1 / 2

Taking LCM 6,

= [(4 × 2) – (1 × 3)] / 6

= (8 – 3) /6

= 5 / 6

2. Sarita bought 2 / 5 metres of ribbon and Lalita 3 /4 metres of ribbon. What is the total length of the ribbon they bought?

Solutions:

Ribbon length bought by Sarita = 2 / 5 metre

Ribbon length bought by Lalita = 3 / 4 metre

The total length of the ribbon bought by both of them = 2 / 5 + 3 / 4

Taking LCM 20,

= [(2 × 4) + (3 × 5)] / 20

= (8 + 15) / 20

= 23 / 20 metre

∴ The total length of the ribbon bought by both Sarita and Lalita is 23 / 20 metre

3. Naina was given  piece of cake, and Najma was given  piece of cake. Find the total amount of cake given to both of them.

Solutions:

Fraction of cake Naina got =
NCERT Solutions for Class 6 Maths Chapter 7 Exercise 7.6 - 7= 3 / 2

Fraction of cake Najma got =
NCERT Solutions for Class 6 Maths Chapter 7 Exercsie 7.6 -8= 4 / 3

The total amount of cake given to both of them = 3 / 2 + 4 / 3

= [(3 × 3) + (4 × 2)] / 6

= (9 + 8) / 6

= 17 / 6

=NCERT Solutions for Class 6 Maths Chapter 7 Exercsie 7.6 - 9

4. Fill in the boxes.

(a) ▯ – 5 / 8 = 1 / 4

(b) ▯ – 1 / 5 = 1 / 2

(c) 1 / 2 – ▯ = 1 / 6

Solutions:

(a) ▯ – 5 / 8 = 1 / 4

▯ = 1 / 4 + 5 / 8

▯ = [(1 × 2 + 5)] / 8

▯ = 7 / 8

(b) ▯ – 1 / 5 = 1 / 2

▯ = 1 / 2 + 1 / 5

▯ = [(1 × 5) + (1 × 2)] / 10

▯ = (5 + 2) / 10

▯ = 7 / 10

(c) 1 / 2 – ▯ = 1 / 6

▯ = 1 / 2 – 1 / 6

▯ = [(1 × 3) – (1 × 1)] / 6

▯ = (3 – 1) / 6

▯ = 2 / 6

▯ 1 / 3

5. Complete the addition and subtraction box.

NCERT Solutions for Class 6 Maths Chapter 7 Exercise 7.6 - 10

Solutions:

(a) 2 / 3 + 4 / 3

= (2 + 4) / 3

= 6 / 3

= 2

1 / 3 + 2 / 3

= (1 + 2) / 3

= 3 / 3

= 1

2 / 3 – 1 / 3

= (2 – 1) / 3

= 1 / 3

4 / 3 – 2 / 3

= (4 – 2) / 3

= 2 / 3

1 / 3 + 2 / 3

= (1 + 2) / 3

= 3 / 3

= 1

Hence, the complete given box is

NCERT Solutions for Class 6 Maths Chapter 7 Exercise 7.6 - 11

(b) 1 / 2 + 1 / 3

= [(1 × 3) + (1 × 2)] / 6

= (3 + 2) / 6

= 5 / 6

1 / 3 + 1 / 4

= [(1 × 4) + (1 × 3)] / 12

= (4 + 3) / 12

= 7 / 12

1 / 2 – 1 / 3

= [(1 × 3) – (1 × 2)] / 6

= (3 – 2) / 6

= 1 / 6

1 / 3 – 1 / 4

= [(1 × 4) – (1 ×3)] / 12

= (4 – 3) / 12

= 1 / 12

1 / 6 + 1 / 12

= [(1 × 2) + 1] / 12

= (2 + 1) / 12

= 3 / 12

= 1 / 4

Hence, the complete given box is

NCERT Solutions for Class 6 Maths Chapter 7 Exercise 7.6 - 12

6. A piece of wire 7 / 8 metre long broke into two pieces. One piece was 1 / 4 metre long. How long is the other piece?

Solutions:

Total length of wire = 7 / 8 metre

Length of one piece of wire = 1 / 4 metre

Length of the other piece of wire = Length of the original wire and this one piece of wire

= 7 / 8 – 1 / 4

= [(7 × 1) – (1 × 2)] / 8

= (7 – 2) / 8

= 5 / 8

∴ Length of the other piece of wire = 5 / 8 metre

7. Nandini’s house is 9 / 10 km from her school. She walked some distance and then took a bus for 1 / 2 km to reach the school. How far did she walk?

Solutions:

Distance of the school from house = 9 / 10 km

Distance she travelled by bus = 1 / 2 km

Distance walked by Nandini = Total distance of the school – Distance she travelled by bus

= 9 / 10 – 1 / 2

= [(9 × 1) – (1 × 5)] / 10

= (9 – 5) / 10

= 4 / 10

= 2 / 5 km

∴ Distance walked by Nandini is 2 / 5 km

8. Asha and Samuel have bookshelves of the same size, partly filled with books. Asha’s shelf is 5 / 6 th full, and Samuel’s shelf is 2/ 5 th full. Whose bookshelf is more full? By what fraction?

Solutions:

Fraction of Asha’s bookshelf = 5 / 6

Fraction of Samuel’s bookshelf = 2 / 5

Convert these fractions into like fractions.

5 / 6 = 5 / 6 × 5 / 5

= (5 × 5) / (6 × 5)

= 25 / 30

2 / 5 = 2 / 5 × 6 / 6

= (2 × 6) / (5 × 6)

= 12 / 30

25 / 30 > 12 / 30

5 / 6 > 2 / 5

∴ Asha’s bookshelf is more full than Samuel’s bookshelf.

Difference = 5 / 6 – 2 / 5

= 25 / 30 – 12 / 30

= 13 / 30

9. Jaidev takes  minutes to walk across the school ground. Rahul takes 7 / 4 minutes to do the same. Who takes less time, and by what fraction?

Solutions:

Time taken by Jaidev to walk across the school ground =
NCERT Solutions for Class 6 Maths Chapter 7 Exercise 7.6 - 14= 11 / 5 minutes

Time taken by Rahul to walk across the school ground = 7 / 4 minutes

Convert these fractions into like fractions.

11 / 5 = 11 / 5 × 4 / 4

= (11 × 4) / (5 × 4)

= 44 / 20

7 / 4 = 7 / 4 × 5 / 5

= (7 × 5) / (4 × 5)

= 35 / 20

Clearly, 44 / 20 > 35 / 20

11 / 5 > 7 / 4

∴ Rahul takes less time than Jaidev to walk across the school ground.

Difference = 11 / 5 – 7 / 4

= 44 / 20 – 35 / 20

= 9 / 20

Hence, Rahul walks across the school ground by 9 / 20 minutes.

FAQs (Frequently Asked Questions)

1. What are fractions?
Fractions represent a part of a whole and consist of a numerator and a denominator.

2. How do you simplify a fraction?
To simplify a fraction, divide both the numerator and denominator by their greatest common divisor (GCD).

3. What are equivalent fractions?
Equivalent fractions are fractions that have different numerators and denominators but represent the same value.

4. How do you add fractions with different denominators?
Find the least common multiple (LCM) of the denominators, convert each fraction to an equivalent fraction with the common denominator, then add the numerators.

5. How do you multiply fractions?
Multiply the numerators together and multiply the denominators together, then simplify if possible.

Leave a Reply

Your email address will not be published. Required fields are marked *